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Abstract—This paper proposes a novel approach to accelerate
large Neural Processing Unit (NPU) design simulations on FPGA
through Chain-based Time-Division Multiplexing (CTDM) and
its automatic compiler. CTDM replaces repeated logic patterns
with a single logic pattern and register chains, which can take
advantage of hardware-predefined shift register primitives. It
reduces FPGA resource utilization more effectively than the
conventional multiplexer-based TDM approaches by minimiz-
ing logic overhead and routing congestion. The automated
CTDM compiler supports various Hardware Design Languages
(HDL) including Verilog, VHDL, High-Level Synthesis (HLS),
and Chisel, as well as a wide range of FPGA devices—from
small on-premise boards to server-grade hardware simulators
like Synopsys Zebu. To address inter-FPGA communication
bottlenecks in multi-FPGA deployments, we also propose an
optimized device partitioning strategy with the block interleaving
technique that minimizes the FPGA link latency. When applied
to NVIDIA’s open-source machine learning accelerator NVDLA,
CTDM achieved 66% and 82% resource reduction of LUTs and
FFs, respectively, and enabled a successful deployment of the full
variants of NVDLA on a single AMD U250 FPGA device. This
demonstrated a 3,653x acceleration in NVDLA simulation time
over the Synopsys VCS simulator on a CPU. This method has
already been implemented for the simulation and verification of
our proprietary NPUs. Notably, it enabled the simulation of a
4-die 1024 TFLOPS chiplet using 144 FPGAs on ZebuS5.

I. INTRODUCTION

The rapid advancements in CMOS process technology have
significantly increased the transistor density achievable in
modern chips, enabling the development of large and complex
hardware designs such as Neural Processing Units (NPUs)
for Artificial Intelligence (AI) applications. However, these
advancements also present challenges for large-scale hardware
simulations, particularly for designs with repetitive structures
such as matrix multipliers. Such designs require substantial
hardware resources, whose simulation and prototyping are
critical but resource-intensive and time-consuming [1], [2].

Field-Programmable Gate Arrays (FPGAs) are widely used
for rapid prototyping and testing of large hardware designs due
to their flexibility and reconfigurability [3]. However, FPGAs
have inherent resource constraints, such as limited Look-Up
Tables (LUTs), Flip-Flops (FFs), and interconnect bandwidth.
When a design exceeds the capacity of a single FPGA, multi-
FPGA systems become necessary. Although these systems
provide scalability, they introduce inter-FPGA communica-
tion bottlenecks that degrade performance. Prior efforts to
mitigate these bottlenecks have focused on techniques such
as Time-Division Multiplexing (TDM) for optimizing inter-

FPGA communication bandwidth. These approaches improve
system performance, but often do not address the resource
utilization and routing congestion within the FPGA fabric
itself [4], [S]. TDM methods can also be applied to logic
modules to reduce FPGA resource usage but often exacerbate
routing congestion and increase logic depth, limiting their
scalability and efficiency [6], [7].

The usability of FPGA-accelerated simulation systems is
crucial in hardware/software co-design workflows. Frequent
design iterations require tools that can seamlessly accom-
modate changes without disrupting the development process.
Automatic compilers play a vital role in reducing design time
and enabling efficient resource optimizations. For instance,
FireSim [8] and FireAxe [1] provide high-performance com-
piler systems with resource sharing and automatic partitioning.
However, these tools do not fully address routing congestion
or advanced resource utilization techniques, leaving room
for further exploration. At the industrial level, server-grade
systems like Synopsys Zebu [9] and Cadence Palladium [10]
offer automatic partitioning and multi-user support for FPGA-
accelerated simulations. However, these systems do not allow
user-defined optimizations such as TDM or resource-sharing
strategies, limiting their applicability for large and complex
designs.

To address these challenges, we propose a novel resource-
efficient FPGA mapping methodology to enable acceleration
of large-scale NPU simulation by FPGA(s) with limited re-
sources. Our key contributions include:

e We propose a Chain-based Time-Division Multiplexing
(CTDM) that employs a TDM strategy for resource
reduction including LUTs and FFs.

o We mapped the CTDM-applied design in FPGA using
predefined primitives, thereby reducing routing conges-
tion and logic depth.

e Our automated CTDM compiler can be applied to any
source design written in HDL. It also supports a wide
range of FPGA target devices for deployment.

o Using a latency-hiding technique based on the block in-
terleaving, our multi-FPGA partitioning strategy reduces
inter-FPGA bandwidth requirements and high-speed I/O
(HSIO) link latency between FPGAs.

o An CPU-FPGA hybrid simulation environment was de-
veloped to offer user-friendly functionalities from com-
mercial simulation software.



The remainder of this paper is organized as follows. Sec-
tion II overviews the techniques typically utilized in modern
FPGA-accelerated simulation. Section III explains how our
proposed CTDM scheme works and the partitioning strategy
with an inter-FPGA latency-hiding technique. Section IV
presents the experimental setup and the results. Finally, Sec-
tion V concludes the paper.

II. BACKGROUND

This section discusses how FPGAs can be utilized to
accelerate large-scale hardware design simulations. Then, we
explain the techniques of TDM and optimizations for inter-
FPGA communication. In addition, this section introduces
commercial hardware and its corresponding tools, illustrating
how the industry uses FPGAs for large-scale hardware simu-
lation.

A. Time-division multiplexing

Normally, TDM is utilized in inter-FPGA communication to
achieve the required bandwidth with limited physical wires.
However, TDM can also be used to share a repeated logic
pattern across different data streams, reducing the area of
logic design at the cost of reduced hardware performance.
Figure 1(a) illustrates the baseline module without TDM,
which consists of four identical combinational logic patterns
and their state registers, S.

For resource sharing, two types of TDM can be considered.
First, we can place a memory device that can store the internal
states of the combinational logic, which will be multiplexed
for resource sharing (Figure 1(b)). This memory-based TDM
requires storing and restoring the internal states (e.g. context
switching) of a module to replicate the state and behavior
of the baseline module. Thus, this requires a load-store logic
and related control signals to extract the necessary context
data from the module. Additionally, context switching itself
requires extra cycles before the module can begin operation.

Second, multiplexers (MUXes) can be used to pump mul-
tiple data streams into a shared logic resource for TDM
(Figure 1(c)). This MUX-TDM scheme does not introduce
additional cycles for context switching, enabling seamless data
flow even with shared TDM logic. However, it requires the
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insertion of MUXes at every point where input/output serial-
ization or deserialization occurs. These additional MUXes can
increase FPGA resource utilization, as large MUXes must be
nested to optimize performance. Furthermore, high fanout on
the output side can exacerbate wiring congestion, which will
be discussed in detail in Section III-A3.

To address these challenges associated with the other two
types of TDM, we propose chain-based TDM (CTDM), which
eliminates the need for large MUXes and complex control
logic (Figure 1(d)). The proposed CTDM scheme also avoids
context switching, ensuring that no additional cycles are
introduced to the logic operation. The detailed explanation of
CTDM will be given in Section III-A.

B. Optimizing inter-FPGA communication

To scale a design across multiple FPGAs, a large-scale hard-
ware design must be partitioned and distributed across differ-
ent FPGAs, requiring inter-FPGA communication via HSIO.
HSIO including serializer-deserializer (SERDES) breaks the
data into parallel words, serializes them for transmission, and
reverses the process at the receiver, all of which require spe-
cialized FIFOs, alignment logic, and clock-domain crossings.
Each pipeline stage, especially as the TDM ratio in SERDES
increases, introduces more latency. Additionally, clock data
recovery at the receiver adds overhead through phase-locked
loops (PLLs) and other digital logic. Collectively, these fac-
tors significantly affect the overall link latency. In addition,
SERDES can increase the logical bandwidth [11], but may
still fall short of the bandwidth requirements of the partitioned
design. To ease these problems, we use CTDM with our par-
titioning strategy to reduce HSIO link latency while meeting
the partitioned design’s bandwidth requirements. This will be
discussed in more detail in Section III-B.

C. Commercial hardware simulator

For simulating large hardware designs, various commercial
hardware platforms are available, including Synopsys Zebu,
which can be used with the Zebu compiler to handle ex-
tremely large designs. Zebu is a hardware emulation platform
equipped with 48 Xilinx VU19P FPGAs, enabling accelerated
verification and validation of complex SoC designs. Although
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Fig. 1: TDM resource-sharing techniques (for a TDM ratio of 4): (a) baseline, (b) memory-based TDM, (c) MUX-based TDM,

and (d) chain-based TDM (ours).



cB () () (i) (iv) (@) () (i)
Top CLK _—I Combinational
O 'aO ~0 ' a0 MUX select logic logic
50528989
g 4 ISC CLK |
N oo pigligh gl
a Q H=
S} ' SO @) E Top T Ti Tis1 ;J
3 e a 3 I, Io, 11, T0pT1e <
1By QH=| o b I, I2, I411200
~ %]
- ' S92 O)lgl| 2L 12, I3, 1200113001 N
~
S I I3 13141
1Bg [~ = QD 1| 9S. so S1, 52,(93; SOina Sly L N |
3 ' Sc 5 8 s 52 83, 15041151141 8211 7 Max fanout= N L - .
Q) i ) S. 52 53, 5044451411524 S3i41 -r A B .-
1By 2 50 o)l &Sa 3 50,+514:\52¢+153.41 50, A I I I PP
d d 3 I | o
L ] ' One period ' ’/
(i): Top clock starts (ii): ISC captures inputs E—t_ I_ - Senth
_{ T°p (iii): c° generates next states (iv): Outputs are generated xira logic bep
(a (b)

Fig. 2: Detailed structure and operation of CTDM: (a) three chains and two
combination logic in composition and (b) timing diagram from ¢ to ¢4 1, with

C© illustrating data flow for calculating 52;, 1.

multiple users can share these FPGA resources, this is often
impractical because large designs—often exceeding billions
of logic gates—can quickly consume all available capacity.
Moreover, Zebu lacks optimization for FPGA resource sharing
and inter-FPGA latency, offering only automatic partitioning
through the Zebu compiler. In Section IV-B3, we compare our
proposed inter-FPGA latency-hiding approach and partitioning
strategy to this auto-partition capability of existing tools.

III. FPGA MAPPING OPTIMIZATION OF NPU

To map our NPU onto an FPGA device, we use chain-based
TDM and inter-FPGA latency hiding with our partitioning
strategy. The former focuses on resource savings, while the lat-
ter addresses performance optimization. Finally, we developed
a CPU-FPGA interface that allows FPGA logic to run within
a commercial simulator, enabling the simulator’s debugging
features to be used alongside the FPGA accelerated simulation.

A. Chain-based TDM

Chain-based TDM (CTDM) is a resource-sharing technique
inspired by design-for-test (DFT) scan-chain methodologies.
A scan chain adds MUXes to the FFs in the design-under-test
(DUT), connecting the output of each FF to the input of the
next FF. It leverages serialized data flow to insert and extract
test patterns to the DUT using a limited number of input/output
pins. Similarly, in CTDM, the serialized data flow is used to
deliver data to a resource-shared logic. The inputs are captured
by MUXes and sequentially shifted to the resource-shared
logic, enabling it to perform a series of computations that
mimics the behavior of multiple modules. To apply CTDM,
repeatedly used modules in the resource-intensive design are
selected as the target modules, regardless of their clock do-
mains or hierarchy levels. The rest of the design, excluding the
target modules, halts its clock during computation, waiting for
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Fig. 3: Comparison of max fanout and logic
depth in (a) MUX-TDM and (b) CTDM.
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the CTDM-applied modules to complete its processing. The
CTDM module, generated by our compiler, serially processes
the inputs of the target modules and deserializes the results,
ensuring equivalent functionality to the original design.

1) Components of CTDM: As shown in Figure 2, the
CTDM module is created from the target modules by applying
CTDM and inserting the corresponding components. The
remaining logic outside the target modules is named as the top
module. The components in the CTDM module are composed
of three FF chains and two combinational logic modules.

CTDM uses FF chains to emulate the behavior of multiple
target modules by modifying states. It consists of three chains:
one for input delivery, one for state modification, and one for
output generation.

« Input Serializer Chain (ISC): ISC (the blue components in
Figure 2(a)) consists of 2-to-1 MUXes, I FFs, and their
connections, which are used to serialize parallel inputs
from the top module and pass them into the shared logic.
The ISC performs two operations, controlled by the MUX
select signal. First, it captures input values from the top
module. Second, it passes these values along the FF chain
to the shared logic.

« State Register Chain (SRC): SRC (the yellow components
in Figure 2(a)) represents SO FFs, which transfer the
original states to the shared combinational logic. S¢
represents FFs that do not directly produce Out through
the combinational logic. The states move linearly and
sequentially without any modification or control.

¢ Output Deserializer Chain (ODC): ODC (the red compo-
nents in Figure 2(a)) includes S© FFs and logic C,
and it is used to produce the original target outputs.
SO represents FFs that directly produce Out through
the combinational logic. C© refers to the subset of the
original combinational logic that is directly connected to



Out. The serialized computation results are deserialized
by ODC to generate output values simultaneously.

These FF chains have simple wiring, which reduces the
wiring complexity in FPGA design. Among them, the SRC
can be replaced with a dedicated shift register primitive since
there is no value change or usage for intermediate FFs.
AMD Shift Register LUT (SRL) [12] utilizes predefined shift
register macros that do not consume the FPGA’s built-in flip-
flops, reducing netlist overhead and improving performance.
However, replacing ISC or ODC with SRL is not feasible
because SRL does not provide access to the intermediate
wires between the internal FFs. This limitation prevents the
insertion of MUXes or the generation of parallel outputs after
deserialization.

In the CTDM module, there are two types of combinational
logic components which are derived from the combinational
logic in the target module: C° and C'©. Unlike C© in ODC,
CO is the subset of the original combinational logic that is
used to update S (= S O 4+ §9). Note that, unlike S© and S0,
C© and C© are not mutually exclusive and may share some
common logic gates.

Depending on their roles, the components of the CTDM
module are grouped into two functional blocks (Figure 2(a)).

« Compute Block (CB): C© and SRC are grouped together
and time-multiplexed for resource sharing. Since one CB
corresponds to the repeated logic patterns in the target
modules, this is the part where the most resource saving
comes from in CTDM.

« Interface Block (IB): We group one slice of ISC and one
slice of ODC as one IB, which works as an interface
between input/output and CB. Unlike CB, multiple IBs
are required for the CTDM module; when a TDM ratio
N is 4, four IBs and one CB are used. The interfaces of
IBs are identical to those of the target module, therefore
the CTDM module can seamlessly replace the target
modules. Note that C© in ODC should be replicated for
each IB due to its use in parallel output generation.

2) CTDM operation: Figure 2(b) illustrates how CTDM
operates with a timing diagram for each clock domain. All
clocks in the diagram originate from the same clock source, but
are gated according to their purpose. In cycle (i), the operation
begins by launching the top clock (CLK) outside of the CTDM
module. The top module uses the output of the CTDM module
to generate its state for the next cycle, which updates the input
value entering the CTDM module. In cycle (ii), the MUX
select goes high to capture the values from In 0 to In 3.

In the cycles denoted as (iii), CO calculates the value of the
input to S and S using the output values of I,, S¢, and
SO This process is repeated for the number of iterations of
the TDM ratio, N. As cycles progress, the values at the ODC
shift positions, and after the N iterations, the first calculated
value, S0;41, reaches the head of the ODC, Sao . At this point,
the calculated values of C©, S0¢41 to 53441, fills the ODC.

In cycle (iv), the output of the CTDM module is then
calculated in C© using the values of the ODC, S¢ to S?,

and these results are fed back to the top module for further
processing. This marks the end of one CTDM period, with a
new period beginning on the rise edge of the next top clock
cycle. The pipeline operation of SRC, S 0 1o Sdo, follows the
same timing with ODC as shown in Figure 2(b).

3) Routing congestion and logic depth: Compared to
MUX-TDM, CTDM reduces implementation complexity by
minimizing the routing congestion and logic depth. In MUX-
TDM, the fanout increases as the data pipeline branches out
at the point where resource sharing ends (Figure 3(a)). The
large fanout in MUX-TDM causes high routing congestion
and restricts the TDM ratio, thereby limiting the amount of
resource reduction that is achievable. In contrast, the output
in CTDM has a maximum fanout of only 2, owing to the
chained structure (Figure 3(b)). It is important to note that the
maximum fanout in CTDM remains unchanged regardless of
the TDM ratio.

Furthermore, MUX-TDM adds a significant amount of
combinational logic for controlling the dataflow, such as
MUZXes to order data to each data pipeline stage (e.g. MUX
in front of S in Figure 1(c)). In CTDM, we only need to
insert SRLs to hold intermediate values for multiple data
pipelines (S© in Figure 2(a)). Since SRLs can be implemented
using dedicated cells in FPGA, no wiring is required between
pipeline stages [13]. A smaller amount of added combinational
logic in CTDM results in an increase of just one level in the
logic depth. In Section IV-B2, we compare CTDM and MUX-
TDM with respect to routing congestion and logic depth based
on the experiment results.

4) CTDM compiler: Thanks to the simple structure, we
can automate the insertion of CTDM into a baseline design.
To apply CTDM to the target design, we implemented a
compiler based on TCL scripts, which works within AMD’s
Vivado TCL interpreter. This allows our proposed method to
be deployed across multiple FPGA-based devices with diverse
environments. Figure 4 shows the entire CTDM compiler
procedure and how it can be deployed to different target
designs.

The CTDM compiler is divided into three main processes:
(1) IB generation, (2) CB generation, and (3) linking them to
the top module. (1) In the IB generation stage, our compiler
removes the original internal combinational logic and FFs,
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Fig. 4: Overview of CTDM compiler operation flow.
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ODC copy on each FPGA, (b) without IB interleaving, and
(c) with IB interleaving.

then creates a chain of FFs for ISC and ODC. (2) In the
CB generation stage, S© are removed and replaced with ports
that are later connected to IB, while SO are replaced with
the SRC using the SRL primitive. (3) In the top module link
process, our compiler runs the synthesis in top module with
the target module replaced by black boxes. Once the synthesis
is complete, the clock control logic and CB are inserted into
the top module, and the black boxes are replaced with IBs.
The ports in the top module, IB, and CB are then stitched
together, followed by the netlist export process (.v, .edif). The
input data for the CTDM compiler includes the top module
name, the target module names, and the synthesis file list.
CTDM can be applied to multiple modules, and by simply
adding target module names to the compiler, and the tasks
will automatically run in parallel.

B. Inter-FPGA communication optimization

While CTDM can reduce resource utilization, it can also
offer a performance improvement in simulation by hiding
inter-FPGA latency when a large design is partitioned across
multiple FPGAs. This section presents how we optimized
inter-FPGA communication with CTDM and highlights how
our method differs from traditional approaches.

1) Partitioning strategy for reducing inter-FPGA wiring:
With CTDM, we employ a partitioning method to reduce the
inter-FPGA bandwidth requirement. A compute engine in an
NPU consumes many LUTs and wires due to its high com-
plexity. Making a partitioning cut inside the compute engine
is not desirable, since the bandwidth requirement between
partitions will surpass the number of physical wires available
in inter-FPGA communication. Instead, we cut the CTDM-
applied design between CB and IBs as shown in Figure 5(a).

2) IB interleaving for latency hiding: Inter-FPGA latency
from HSIO interfaces can impair the simulation performance.
This latency comes from SERDES, clock domain crossing
(CDC) logic, and link clock synchronizers in each FPGA. By
interleaving IBs that communicate with the other FPGAs, we
can effectively hide this latency.

Note that we have two identical copies of ODC in both
‘FPGA A’ and ‘FPGA B’ devices in Figure 5(a). This makes
an immediate calculation in CB possible when receiving input
values from ISC in ‘FPGA A’. It reduces HSIO RX latency
in ‘FPGA A’, since we only need to send the content of
ISCs. However, on IB in ‘FPGA B’, we still need to wait for
the completion of the previous transaction for incoming ODC
content, and this prohibits ‘FPGA B’ from sending new input
values due to the current transaction. To avoid this problem, we
can bundle two IB modules into a set and send data to CBs in
a ping-pong manner using two IB module bundles. With this
optimization, the waiting time for ODC data arrival will be
shorter and the other IB set can start new transactions to send
data without waiting. This can hide both the HSIO transmitter
(TX) and receiver (RX) latency on ‘FPGA B’. Figure 5(b)
and Figure 5(c) show CTDM partitioning methods without
and with IB interleaving, respectively.

Figure 6(a) shows the timing diagram for the traditional
partitioning method. Upon the rising edge of the top clock,
data is transferred to the target module, and the target module
sends output data back to the top module. Figure 6(b) shows
the timing diagram for CTDM partitioning without ODC copy
and IB interleaving, where four ISC transmissions to CB are
placed between the rising edges of the top clock. The response
data from CB must also be transmitted to the top module to
complete one trip of data transaction; hence, the HSIO TX
and RX latencies are still visible. Figure 6(c) illustrates the
timing diagram in inter-FPGA data transfer for IB modules,
where IBO-IB1 and IB2-IB3 alternate sending data through
HSIO via MUX selection. The MUX with the red lines in
Figure 5(c) alternates the selection between the IB bundles,
selecting the ISC to accept the data. Similarly, CB’s output
data are received through HSIO by selecting the destination
IB bundles through the MUX with blue lines in Figure 5(c).
By alternating between IB bundles and sending data in a ping-
pong manner, HSIO latency is hidden, allowing the top clock
frequency to increase.

C. CPU-FPGA interface for user-friendliness

FPGA-based simulations offer faster simulation speed and
more programmability compared to CPU-based simulations,
but they provide only limited access to the internal signals
even with the existence of an integrated logic analyzer (ILA)
and FPGA readback functionality for debugging and signal
probing. On the other hand, software simulation on the CPU
offers full visibility to the internal signals of the chip design
and has other features such as assertion, breakpoints, and
waveform generation. To address this, we developed a hybrid
hardware simulation system that offloads compute units and
computation-intensive logic to FPGAs, while simulating the
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rest on a CPU in a conventional manner with a software RTL
simulator (Figure 7).

In our simulation system, the CPU-FPGA connection is
established through PCle, which introduces inter-device de-
lays. However, this approach improves scalability and enables
the simulation of larger designs with fewer FPGA resources.
To minimize inter-device latency, we developed a custom
Linux driver for efficient data transfer, achieving performance
near bare-metal levels. Since our system directly interfaces
with software RTL simulators (e.g. Verilator, Synopsys VCS),
we can leverage their user-friendly debugging features while
accelerating high-load simulations on the FPGA.

IV. EVALUATION
A. Experimental setup

We used three simulation cases, neural engine (NE), neural
engine with a system on a chip (NE+SoC), and NVDLA [14]
to evaluate our proposed method. When on-premise FPGA
was used, the test system has Intel’s 19-12900 CPU with 32
GB DRAM, and FPGA cards are attached to the PCle 3.0 x16
slot. NPU designs were mapped to FPGA using AMD Vivado
software, with our automatic compiler for applying CTDM op-
erating within Vivado’s TCL interpreter. For mapping designs
to Synopsys Zebu [9], we utilized Synopsys’s Zebu compiler.
To optimize performance and resource utilization, we applied
CTDM with a TDM ratio of 16 in all test cases.

1) Neural Engine (NE): We applied our proposed method
to our proprietary NPU chip’s simulation. Neural Engine (NE)

Fig. 8: Neural engine simulation system with two FPGAs.

is the core of our proprietary chip that performs multiply-
accumulate (MAC) operations for deep learning workloads.
NE features a 4MB scratch pad and provides 16 TFLOPS
of compute performance. Its architecture consists of vector
processors, tensor processors, and load/store units, all using
repeated MAC operations. The tensor processor is composed
of 128 MAC units, while the vector processor includes 16
MAC units. Both have a repeated logic pattern to which
CTDM can be applied. To simulate NE, we used a hybrid
system composed of a CPU and two on-premise AMD U250
FPGAs. The CPU-FPGA hybrid simulation was conducted
by creating a C++ interface in the Synopsys VCS simulator,
allowing data transfer with the U250 FPGA through a PCle
driver. The PCle driver is developed using AMD’s XDMA
IP [15], which is published as an open source Linux driver.
Figure 8 shows the CPU-FPGA hybrid simulation system that
runs NE.

2) Neural Engine with System-On-Chip (NE+SoC): In our
NPU design, each die contains a total of 16 neural engines
(NEs) and four dies that form a single chiplet. In addition,
this chiplet includes a system-on-chip (SoC) with NEs. The
SoC includes components such as an SRAM buffer, a DMA
engine, a PCle controller, and a network-on-chip (NoC). The
SoC occupies a significant area on the chip, comparable to
the NE within the NPU. Consequently, simulating this system
requires more resources than in the NE case, necessitating
additional FPGAs to map the design. To simulate NE+SoC on
FPGA, we used Synopsys Zebu5.
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3) NVIDIA deep learning accelerator (NVDLA): We also
tested our methods in open-source NVDLA [14] to fairly
demonstrate the effectiveness of CTDM. In the test, the largest
configuration nv_full, which includes 2,048 INT8 MACs,
1,024 MACs (INT16, FP16), and a 512 KB buffer, was used.
Figure 9 shows the abstracted structure of NVDLA, where data
flow through internal modules for computation. Among these,
CTDM was applied to the convolution MAC array (CMAC)
and the convolution accumulator (CACC). The CMAC consists
of 16 MAC cells and each of the MAC cells consists of 64 16-
bit multipliers and 72 adders. To simulate NVDLA, we used
a single U250 device.

B. Result and analysis

1) Resource utilization: In all three experiments across NE,
NE+SoC, and NVDLA, a significant reduction in the use of
LUT and FF was observed. For the NE experiment, Figure 10
illustrates the LUT usage for each CTDM component in the
original baseline implementation, the DSP-mapped version,
the MUX-TDM version, and the proposed CTDM-applied
version. Additionally, it shows the LUT capacity limit for the
VU19P and U250 FPGA devices. The DSP-mapped version
of the NE architecture is the result of hard mapping specific
combinational logics into DSPs and some registers into block
RAMs for resource reduction. It required four engineers work-
ing for six months to result in a 20% reduction in resource
usage. In comparison, CTDM achieved 71% reduction in just

TABLE I: Resource count comparison of baseline design,
MUX-TDM, and CTDM for NE and NVDLA.

Type Design Baseline MUX-TDM CTDM

LUT NE 5.55M 2.64M (48%) 1.54M (28%)
LUT NVDLA 3.31M 2.71M (82%) 1.11M (34%)
FF NE 2.15M 2.24M (104%) 1.21M (56%)
FF NVDLA 6.17M 6.17M (100%)  1.09M (18%)

TABLE II: LUT count comparison of baseline design, MUX-
TDM, and CTDM for NE and NVDLA subunits.

Design Subunit  Baseline MUX-TDM CTDM
NE 1d, st 291k 405k (139%) 84k (29%)
NE vectorQ 419k 166k (40%) 65k (16%)
NE vectorl 521k 194k (37%) 81k (16%)
NE tensor 3,539k 1,394k (42%) 606k (17%)

NVDLA CMAC 728k 123k (17%) 102k (14%)

server. For NVDLA, the reduction ratio is 66.5% for LUT
and 82.4% for FF. To the best of our knowledge, our work
is the first to deploy the full variant of NVDLA on FPGA
without removing its modules. The only other work [16]
deployed nv_full on Amazon EC2 FPGA cloud but removed
the convolution engines for INT16 and FP16. Table I and
Table II present the resource count comparison in the FPGA
deployment of NE and NVDLA across the baseline, MUX-
TDM, and CTDM schemes.

2) Routing congestion and logic depth: Comparing the
three conditions—baseline, MUX-TDM, and CTDM—shows
that applying CTDM reduces both the total net count and
the total fanout. These two reductions help reduce routing
congestion. We tested three configurations on the U250 FPGA:
baseline 16 MAC cells, MUX-TDM, and CTDM. Due to
routing failure, nv_full with MUX-TDM could not fit, so we
implemented only the NVDLA CMAC for evaluation.

From the experiments, we obtained the following metrics:
a total sum of fanout, the highest fanout, the maximum logic

TABLE III: Detailed results in resource and routing reduction
of NVDLA CMAC.

. Baseline MUX-TDM CTDM

12 hours of automated compiler run. # of Instances 1 16 16 16

Ff)r the NE+SOC experlmept, We‘ used 'ZebuS fqr the s.1m- Total # of nets ook 993K 206K 116K
ulation. Without LUT reduction, simulation was impossible Sum of fanout 345k 5515k 1,022k 787k
since it requires 204 AMD VUI19P FPGAs. However, after Max. fanout 14k 14k 26k 14k
applying CTDM, we implemented it using 144 FPGAs which fMaX- iog}c gepg]l 13248 2(3)38 2(3)18 13258
is the amount of FPGA chips included in three units of Zebu5 o7 max. fogic cepth et
Baseline Top [ o [ 1+ T 2 [ 38 [ 4 ] ComputeCore [ 8 [ 9 [ 10 [ 1 [ 12 | 13 | 14 [ 15 |
DSPmapped Top . DSP-mapped Compute Core 0-15 :
MUX-TDM Top . MUX-TDM Compute Core 0-15 '
CTDM Top CB IB 0-15 . . LUT counts

0 11,000,000 ] 12,000,000 13,000,000 12,000,000 5,000,000
[¥E54]1,728,000 4,085,760

Fig. 10: LUT reduction result for NE.
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Fig. 11: NVDLA CMAC logic depth histogram.

depth, and the number of nets with the highest logic depth.
Table III shows that CTDM reduces the net count by 44% and
the sum of fanout by 23% compared to MUX-TDM.

Compared to baseline, CTDM increased the maximum logic
depth by 1 but reduced the net count from 2,048 to 128 at
this depth. In contrast, MUX-TDM maintained the same net
count but increased the logic depth by 3. CTDM reduced the
number of nets with the maximum logic depth by a factor of
16, corresponding to the TDM ratio used in the experiment.

Figure 11 shows the histogram of logic depth for the CMAC
in baseline, MUX-TDM, and CTDM schemes. The histogram
analysis shows that MUX-TDM increases the maximum logic
depth of the baseline by 3, while CTDM increases it only by
1 and reduces the occurrences by 16 times. This reduction
is consistent except at depth 0 and 1, due to shift registers
inserted between combinational logics. Logic depth affects
critical path delay in static timing analysis (STA), while the
number of wires affects routing congestion. In this context,
CTDM achieves better results in reducing routing congestion
compared to MUX-TDM, allowing nv_full to fit on a single
U250 FPGA.

3) Frequency optimization via latency-hiding: In compari-
son experiments with a commercial simulator, applying CTDM
resulted in a higher operating frequency. To evaluate our
inter-FPGA latency-hiding method, we used Zebu compiler’s
auto-partitioning for Zebu5 and compared it to our proposed
latency-hiding approach combined with our partitioning strat-
egy. The target design used here is NE. In each experiment,
simulation performance is limited by the top clock, which
depends on the end-to-end HSIO latency. We used this slow-
est clock to evaluate the effectiveness of our latency-hiding
technique. Table IV shows the results of various FPGA-based
devices to simulate NE without SoC.

CTDM on Zebu can reduce FPGA usage by 1/5, freeing up
resources for other users. This enables a trade-off between
performance and resource utilization in FPGA simulation,
supporting simulations with fewer FPGAs and freeing up addi-
tional FPGA units for multi-tenancy on expensive server sim-
ulators like Zebu. For on-premise FPGA setups (e.g. U250),
we compared CTDM with a baseline configuration that uses
the same partitioning method as ours but without any TDM
techniques, requiring deployment on five U250 boards. Our
CTDM achieves 397 kHz using only two FPGAs, surpassing
the baseline performance of 318 kHz while using fewer
FPGAs (Table 1V).

4) Simulation speedup: By selecting specific workloads
and comparing the CPU-based approach against the proposed
CTDM, a significant improvement in simulation speed was
observed. We compared the simulation performance of the
Synopsys VCS running on a CPU with that of our CPU-FPGA
hybrid system. For the NE case, the simulation took 372.8
seconds on the CPU using the VCS simulator, whereas it com-
pleted in just 0.6 second on our CPU-FPGA hybrid simulator.
This demonstrates a 621x speedup in simulation time with
our proposed method. The workload used in this test is our
matrix multiplication test pattern for our chip’s functionality
verification. For NVDLA, the simulation on the CPU using
the VCS simulator took 0.88 hours, while the FPGA-only
simulation system completed it in just 0.867 second, achieving
a 3,653 x speedup for the AlexNet experiment.

V. CONCLUSION

This paper investigated mapping large NPU designs with
repeated logic patterns to FPGAs in a resource-efficient man-
ner. In simulating a large NPU design, the application of TDM
for resource sharing is crucial due to the limited resources
available on FPGAs. Using a novel chain-based TDM (CTDM)
technique, we achieved 66.5% reduction in LUT utilization
and 82.4% reduction in FF utilization in FPGA mapping of
the NVDLA design. Furthermore, by incorporating the inter-
FPGA latency-hiding technique with the partitioning strategy,
the implementation of our own NPU core design in U250
demonstrated a 24.8% improvement in the operating frequency
with fewer FPGA boards. Finally, applying this methodology
to the Zebu5 FPGA simulation server for a massive 4-chiplet
NPU, we successfully mapped the entire design using only
144 VUI19P FPGA chips. This approach is now actively used
for the hardware simulation and software development of our
proprietary NPU.

TABLE IV: Operating frequency of the proprietary chip’s neural engine on two FPGA-based devices.

Device  Partitioning  Latency-hiding CTDM ratio  Top freq. (kHz) FPGA counts LUT usage (% per FPGA)
Zebu Auto No 1:1 57.8 VUI19P x5 5.5M (134%)
Zebu No No 1:16 11.4 VU19Px 1 1.6M (39%)
U250 No opt. No 1:1 318 XCU250%5 5.5M (318%)
U250 CTDM No : 97.4 XCU250%2 1.6M (92%)
U250 CTDM Yes 397 XCU250%2 1.6M (92%)
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