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Abstract—This paper proposes a novel approach to acceler-
ate large Neural Processing Unit (NPU) simulations on FPGA
through Chain-based Time-Division Multiplexing (CTDM) and
its automatic compiler. CTDM replaces repeated logic patterns
with a single logic pattern and register chains, which can take ad-
vantage of built-in shift register primitives. It reduces FPGA re-
source utilization more effectively than conventional multiplexer-
based Time-Division Multiplexing (TDM) approaches by mini-
mizing logic overhead and routing congestion. The automated
CTDM compiler supports various hardware design languages
(HDL) including Verilog, VHDL, high-level synthesis (HLS),
and Chisel, as well as a wide range of FPGA devices—from
small on-premise boards to server-grade hardware simulators
like Synopsys ZeBu. To extend the applicability of CTDM to
multi-FPGA systems, we propose a block interleaving technique
that hides inter-FPGA link latency and fully utilizes the pipeline
in a high-speed serial I/O channel. When applied to NVIDIA
Deep Learning Accelerator (NVDLA), CTDM achieved a 66%
and 82% reduction in LUT and FF utilization, respectively,
and enabled the successful deployment of the largest variant of
NVDLA on a single AMD U250 FPGA device. This demonstrated
a 3,653× acceleration in NVDLA simulation time over the
Synopsys VCS simulator on a CPU. This method has already
been implemented for the simulation and verification of our
proprietary NPUs. Notably, it enabled the simulation of a 4-
die 1024 TFLOPS chiplet using 144 FPGAs on ZeBu 5 server.

I. INTRODUCTION

Advances in CMOS technology have greatly increased
transistor density, enabling large-scale designs such as Neu-
ral Processing Units (NPUs) for Artificial Intelligence (AI)
applications. While these architectures offer tremendous ca-
pability, their size and complexity pose significant challenges
for pre-silicon validation, particularly in designs with repetitive
structures like large systolic arrays. Conventional CPU-based
simulation is prohibitively slow, and GPUs often struggle with
the irregular branching and dependencies in RTL.

ASIC-based simulation can handle such irregularities but
its long development cycle delays pre-silicon validation. In
contrast, FPGAs enable rapid prototyping and testing of large
designs due to their flexibility and reconfigurability [1]. How-
ever, FPGAs have limited Look-Up Tables (LUTs), Flip-Flops
(FFs), and interconnect bandwidth.

In this respect, HAsim [2] time-multiplexes modules to
simulate many cores with a single instance on FPGA. PiM-
ulator [3] employs FreezeTime virtualization to swap mem-
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ory states for larger system emulation. ASH [4] applies the
dataflow-driven method and skips inactive logic to reduce the
usage of hardware resources in simulation. Although efficient,
these methods often lack essential features for simulating
large-scale NPUs, such as compiler-driven automation, scal-
ability for large source designs, or the ability to run software
workloads for testing AI models. FireSim [5] offers the
broadest set of features among existing solutions that satisfy
these criteria and is released as open source. FireAxe [6],
a compiler add-on to FireSim [5], offers design partitioning
and FAME-5 transformation for better resource efficiency on
FPGA. However, their optimizations apply only when the
hardware is written in Chisel [7], due to tight integration
with the Chipyard [8] ecosystem. Designs written in hardware
design languages are supported only as blackbox IPs, which
disables key optimizations of FireSim/FireAxe [9]. Table I
summarizes supported features across simulation methods.

Simulation
features HAsim

[2]

PiMulator[3]

FireSim[5]

ASH[4]
CTDM

(ours)

Resource saving o o o o o
Compiler support o x o o o
Scalability x △ o o o
Supported language .v/.sv .sv Chisel .v/.sv All

TABLE I: Feature comparison of simulation/emulation frame-
works. (Triangle mark indicates partial support)

Beyond these requirements, we also aim to optimize inter-
FPGA communication, since a multi-FPGA system is in-
evitable when a design exceeds single-chip capacity. Prior
work addresses this using Time-Division Multiplexing (TDM)
to optimize bandwidth [10], [11], but often overlooks intra-
FPGA routing congestion or low channel utilization.

Commercial platforms like Synopsys ZeBu [12] and Ca-
dence Protium [13] support automatic FPGA partitioning for
accelerated simulation, but are expensive and lack resource-
sharing optimizations, limiting scalability.

We limit our discussion to the logic-level TDM method [14]
without live reconfiguration, as it introduces configuration de-
lay into simulation, however small. Likewise, hypervisors [15],
vFPGA [16], and partial reconfiguration [17] on FPGA are
outside the scope of this work.



To address the challenges above, we propose a novel
resource-efficient FPGA mapping methodology to accelerate
large-scale NPU simulation with limited FPGA resources, with
the following key contributions:

• A Chain-based Time-Division Multiplexing (CTDM)
technique employing an efficient TDM strategy for sig-
nificant resource reduction, including LUTs and FFs.

• An optimized FPGA mapping methodology for CTDM-
applied designs utilizing built-in primitives, effectively
reducing routing congestion and logic depth.

• An automated CTDM compiler applicable to diverse
source design languages and supporting a wide range of
FPGA target devices for deployment.

• An inter-FPGA latency-hiding technique specifically de-
veloped to improve CTDM scalability for large-scale
NPU simulation in multi-FPGA environments.

II. BACKGROUND

This section discusses how FPGAs can be utilized to
accelerate large-scale hardware design simulations. Then, we
explain TDM techniques and optimizations for inter-FPGA
communication. In addition, this section introduces commer-
cial hardware and its corresponding tools, illustrating how the
industry uses FPGAs for large-scale hardware simulation.

A. Limitations of Prior TDM Resource Sharing Techniques

To improve area efficiency on FPGAs, prior works have
explored several TDM approaches, including memory-based
TDM (MEM-TDM), multiplexer-based TDM (MUX-TDM),
and multi-pumping TDM (MP-TDM). Although each reduces
resource usage in different contexts, all present scalability and
timing limitations for large datapath workloads.

MEM-TDM replicates logic virtually by saving and restoring
internal states across time slices. Used in FPGA-based multi-
core emulation [18], [2], this approach enables thread-level
context switching, but incurs high memory and bandwidth
overheads, making it inefficient for compute-bound designs
with large amounts of internal state.

MUX-TDM reuses stateless combinational logic via multi-
plexed data paths [19], [20], [21], [22]. While effective for
pipelined or asynchronous modules, it increases critical path
delay and routing complexity due to dense control and muxing
logic, especially in wide or replicated datapaths.

MP-TDM exploits clock-domain frequency scaling to effi-
ciently time-share fixed-function units such as DSPs [23], [24],

[25], [26], [27], [28]. This method avoids added latency, but
requires strict clock alignment and does not scale well with
high TDM-ratio resource sharing.

Figure 1(a) illustrates the baseline module, which consists
of four identical combinational logic patterns and their state
registers, S. Figure 1(b–d) summarizes the above techniques,
showing how each handles data movement and control com-
pared to the baseline. While effective within their design
scopes, they scale poorly for compute-dense workloads with
sequential dependencies and high interconnect demand.

To address these challenges, we propose Chain-based TDM
(CTDM) (Figure 1(e)), which serializes logic patterns across
a unidirectional chain. CTDM combines the compactness
of MUX-TDM with the benefit of requiring neither state
management nor multi-clock design, while enabling high-ratio
TDM that is impractical in MP-TDM.

B. Large-Scale FPGA Simulation Requirements

Scaling large hardware designs across multiple FPGAs
inherently requires partitioning and distributing logic, which
introduces inter-FPGA communication over high-speed serial
I/O (HSIO) links. These links, typically based on serializer-
deserializer (SERDES) interfaces, serialize parallel data for
transmission and reconstruct it at the receiver. To this end,
supporting logic is needed, such as FIFOs, data alignment
units, and clock domain crossing modules, to ensure data
integrity and timing consistency.

As the TDM ratio in SERDES increases, allowing more log-
ical signals to share a single physical link, pipeline depth, and
communication latency also grow. Prior works mitigate this
overhead by optimizing signal-to-channel assignments [29],
TDM ratios [30], [10], [31], or minimizing inter-FPGA com-
munication via partitioning algorithms [32], [33], [34].

However, these methods typically assume steady-state traffic
where HSIO pipelines remain full. In practice, especially with
TDM-based resource sharing, bubbles or idle cycles can occur,
reducing efficiency. We observed such stalls when applying
CTDM across multiple FPGAs.

To support CTDM in multi-FPGA simulation environments,
Section III-C identifies the root causes of inter-FPGA commu-
nication inefficiency and introduces a latency-hiding solution.

C. Commercial Hardware Simulator

Commercial platforms like Synopsys ZeBu and Cadence
Protium enable hardware-accelerated simulation of extremely

(b) (c)
: Logic components from baseline design

Combinational
logic

(a)

In

x4

Out

21 3

In0...3 Out0...3
Memory 0

Load Store

Combinational
logic

CTRL
MUX

FF enable

In0

In1

In2

In3

Combinational
logic

Out0

Out1

Out1

Out2

: Logic components added for TDM (d)
Base CLK(1x)

Fast CLK(4x)

Clock domain: 4x 

A
li

g
n

m
e
n

t 
re

g
is

te
rs

CTRL
MUX

CLK Cross

In0

In1

In2

In3

Out0

Out1

Out2

Out3

Combinational
logic

Out0

Out1

Out2

Out3(e)

In0

In1

In2

In3

Combinational
logic

Fig. 1: TDM resource-sharing techniques: (a) baseline, (b) MEM-TDM, (c) MUX-TDM, (d) MP-TDM and (e) CTDM (ours).



Fig. 2: Detailed structure and operation of CTDM: (a) three chains and two
combination logic in composition and (b) timing diagram from t to t+1, with
CŌ illustrating dataflow for calculating S2t+1.

Fig. 3: Comparison of max fanout and logic
depth in (a) MUX-TDM and (b) CTDM.

large designs using their respective compilers. While capable
of handling tens of billions of gates, full-chip simulation
often does not scale well due to the high cost of additional
servers and inter-server communication bottlenecks. Addi-
tionally, their compilers support only automatic partitioning
and lack resource usage optimizations. These systems use
the AMD Vivado backend to map designs to FPGAs. As
both ZeBu 5 server and Protium X2 use the AMD VU19P
chipset, our compiler targets this architecture for CTDM-based
simulation, as described in Section III-B.

III. FPGA MAPPING OPTIMIZATION OF NPU

To map our NPU onto an FPGA device, we use chain-based
TDM and inter-FPGA latency hiding with our partitioning
strategy. This section details how we enabled resource savings
while maintaining simulation performance.

A. Chain-based TDM

Chain-based TDM (CTDM) is a resource-sharing technique
inspired by design for testability (DFT) scan chain methodolo-
gies. A scan chain inserts multiplexers (MUXes) next to the
flip-flops(FFs) of the design under test (DUT), enabling test
patterns to be shifted in and out of the DUT through a limited
number of pins. Following a similar principle to scan chains,
CTDM utilizes serialization to feed the resource-shared logic.
Inputs are captured via MUXes and shifted sequentially into
the shared logic, enabling it to perform computations over time
that mimic the behavior of multiple distinct modules.

To apply CTDM, repeatedly used modules in the resource-
intensive design are selected as the target modules, regard-
less of their clock domains or hierarchy levels. The rest
of the design, excluding the target modules, halts its clock
during computation, waiting for the CTDM-applied modules
to complete its processing. The CTDM module, generated

by our compiler, sequentially processes the inputs of the
target modules and deserializes the results, ensuring equivalent
functionality to the original design.

1) Components of CTDM: As shown in Figure 2, the
CTDM module is constructed by eliminating redundant logic
patterns from the target modules. The remaining logic outside
the target modules is named the ‘top module’.

Internally, the CTDM module core consists of three FF
chains, which are color coded in Figure 2 (a). This architecture
reduces routing complexity via simple wiring. The chains are
defined as follows:

• Input Serializer Chain (ISC): The blue chain consists of
2-to-1 MUXes, I FFs, and their connections. It serializes
parallel inputs from the top module before passing them
to the shared logic. The ISC performs two operations,
each controlled by the MUX select signal. First, it cap-
tures input values from the top module. Second, it passes
these values along the FF chain to the shared logic.

• State Register Chain (SRC): The yellow chain represents
SŌ FFs, which transfer the original states to the shared
combinational logic. SŌ represents FFs that do not di-
rectly produce Out through the combinational logic. The
states move sequentially through SRC without requiring
modification or control.

• Output Deserializer Chain (ODC): The red chain includes
SO FFs and logic CO, to produce the original target out-
puts. SO represents FFs that directly produce Out through
the combinational logic. CO refers to the subset of the
original combinational logic that is directly connected to
Out. The serialized computation results are deserialized
by ODC to generate output values simultaneously.

Next, two CTDM components, CO and CŌ, are derived
from the original combinational logic in the target module.
While CO computes values directly for the outputs, CŌ is the



subset of the original combinational logic used to calculate
the next state for all flip-flops S (=SO + SŌ). Note that,
unlike SO and SŌ, CO and CŌ are not mutually exclusive
and may share some common logic gates. Based on their roles,
the components of the CTDM module are grouped into two
functional blocks, as shown in Figure 2(a).

• Compute Block (CB): CŌ and SRC are grouped together
and time-multiplexed for resource sharing. One CB rep-
resents the repeated logic patterns in the target modules.

• Interface Block (IB): Each IB, comprising one slice of
ISC and ODC, interfaces between I/O and the CB. Acting
as a wrapper, the IB provides interfaces identical to those
of the target module. Consequently, the CTDM module
can readily replace the target module. Note that multiple
IBs are instantiated based on the TDM ratio (e.g., four
IBs for N=4), alongside a single CB.

2) CTDM operation: Figure 2(b) provides a detailed illus-
tration of the CTDM operating flow with a timing diagram
for each clock domain. In cycle (i), the operation begins by
launching the top clock (CLK) outside of the CTDM module.
The top module uses the output of the CTDM module to
generate its state for the next cycle, which updates the input
value entering the CTDM module. In cycle (ii), the MUX
select goes high to capture the values from In 0 to In 3.

In the cycles denoted as (iii), CŌ calculates the value of the
input to SŌ

d and SO
d using the output values of Ia, SŌ

a , and
SO
a . This process is repeated for the number of iterations of

the TDM ratio, N . As cycles progress, the values at the ODC
shift positions, and after the N iterations, the first calculated
value, S0t+1, reaches the head of the ODC, SO

a . At this point,
the calculated values of CŌ, S0t+1 to S3t+1, fill the ODC.

In cycle (iv), the output of the CTDM module is then
calculated in CO using the values of the ODC, SO

a to SO
d ,

and these results are fed back to the top module for further
processing. This marks the end of one CTDM period, with a
new period beginning on the rise edge of the next top clock
cycle. The pipeline operation of SRC, SŌ

a to SŌ
d , follows the

same timing with ODC as shown in Figure 2(b).
3) Routing congestion and logic depth: Compared to

MUX-TDM, CTDM substantially mitigates physical imple-
mentation complexity by minimizing routing congestion and
logic depth. In MUX-TDM, the fanout increases as the data
pipeline branches out at the point where resource sharing
ends (Figure 3(a)). The large fanout in MUX-TDM causes
high routing congestion and restricts the TDM ratio, thereby
limiting the amount of resource reduction that is achievable. In
contrast, the output in CTDM has a maximum fanout of only
2, owing to the chained structure (Figure 3(b)). It is important
to note that the maximum fanout in CTDM remains unchanged
regardless of the TDM ratio.

Furthermore, MUX-TDM introduces substantial control
logic, such as MUXes (e.g., the MUX in front of S in
Figure 1(c)) and a finite-state machine to generate MUX
select and register enable signals. In CTDM, the only added
component from the baseline design is ISC to capture parallel
inputs before serialization. This enables only one level increase

in the logic depth when applying CTDM. In Section IV-B2,
we compare CTDM and MUX-TDM with respect to routing
congestion and logic depth based on the experiment results.

4) Use of FPGA primitive: Our CTDM method uses built-
in FPGA primitives to implement SRC, which constitutes the
largest portion of replaced logic in the original design. This
crucial optimization enables maximum resource efficiency in
FPGA-accelerated simulation.

In AMD FPGAs, SRCs are implemented using Shift
Register LUT (SRL) primitives—specifically, SRL16E or
SRL32E [35]. These macros reduce wiring overhead and save
resources by avoiding the use of built-in flip-flops. Figure 4(a)
shows the SRL structure. However, SRLs provide only a single
output from the selected stage and do not support tapping
intermediate outputs, making them unsuitable for components
like the ISC or ODC. When the TDM ratio N is less than
16, the remaining (16 − N) stages are unused and cannot
be repurposed. However, a TDM ratio of 16 generally yields
sufficient savings, and the replicated logic patterns in NPUs
often exhibit higher parallelism, exceeding the benefits of a
TDM ratio of 16.

In Intel FPGAs, CTDM uses the TriMatrix embedded
memory IP [36], specifically the Memory Logic Array Block
(MLAB), which is the most abundant resource type and can
be configured as a shift register (Figure 4(b)). MLABs can
output only at depths that are multiples of three, limiting the
TDM ratio to 3, 6, 9, or 12.

Although SRLs and MLABs can be used as distributed
RAM or FIFO, they are inefficient for large-capacity buffering
due to routing overhead from interconnecting instances. This
often leads to under-utilization of these resources, making
CTDM well suited to repurpose these unused macros.

Fig. 4: FPGA shift register: (a) AMD SRL (b) Intel MLAB.

Fig. 5: Overview of CTDM compiler operation flow.



B. CTDM Compiler

The simplicity of the CTDM structure facilitates its auto-
mated insertion into baseline designs. Our CTDM compiler,
implemented using Tcl scripts within the AMD Vivado Tcl
interpreter, supports a wide range of FPGA devices, enabling
deployment across diverse environments. Since the compiler
operates on post-synthesis netlists, it supports designs written
in nearly any hardware description language. As illustrated in
Figure 5, this automated flow consists of three stages: (1) IB
generation, (2) CB generation, and (3) top module linking.

In IB generation, the process begins by synthesizing the
target module. Output state flip-flops (SO) are identified via
fan-in tracing from output ports, filtering FF cells using
synthesis tool commands (e.g., Vivado, Design Compiler).
These SO are shown in red in Figure 6(a). The compiler then
removes internal combinational logic and FFs (excluding SO).
A MUX and FF are inserted at each input port to build the
input serialization chain. The ISC MUX input, ISC FF output,
and the D/Q pins of the ODC FF (SO) are exposed as IB
ports, forming the complete IB structure in Figure 6(b).

In CB generation, the D/Q nets of SO are connected to CB
ports, and the SO are removed. Internal FFs are replaced with
enabled shift registers, implemented by adding a MUX to the
D input of SRL primitives (due to the lack of a native enable
pin), as shown in Figure 7(a). If the module includes SRAM,
the CB increases the address folding count and inserts a shift
register to latch the SRAM output due to its one-cycle latency,
as shown in Figure 7(b).

In top module linking, the top module is synthesized with
the target modules as black boxes. After synthesis, the com-
piler inserts clock control logic and the CB, replaces black
boxes with IBs (Figure 6(e)), and connects ports across the
top, IBs, and CB. The compiler takes the instance names of
the top and target modules, along with the synthesis file list,
as input. Although it does not automatically detect repetitive
logic patterns for CTDM insertion, it scans the target module’s
internal logic to identify and insert CTDM logic.

C. CTDM in multi-FPGA environment

Although CTDM can reduce FPGA resource utilization,
applying it in a multi-FPGA environment for large-scale

Fig. 6: CTDM compilation process: From the target module
(a) to IB (b) and CB (c) generation. At a higher level, baseline
design (d) will be converted to CTDM design (e).

Fig. 7: CTDM Primitives: (a) Enabled Shift Register (b)
Modified SRAM for address folding and an output shift
register for timing alignment.

NPU simulation presents a significant challenge. This section
identifies such the challenge and proposes a solution.

1) Pipeline bubbles and inter-FPGA latency exposure: As
discussed in Section II-B, inter-FPGA communication intro-
duces considerable latency, even with applied optimizations. In
TDM, the top-level control logic initiates the TDM operation
on the rising edge of the clock, and logic replication is
performed across multiple cycles by transmitting serialized
data through a pipeline. Once multiplexing is completed, the
data are returned to the top-level module, which then provides
new inputs to the TDM logic for the next operation. This
sequential control flow becomes more problematic when HSIO
latency is introduced. Figure 8(a) illustrates how a CTDM
module can be partitioned between FPGA A and B, with data
transmitted over HSIO. While the first data batch completes
a full round trip between FPGA B and FPGA A, the top-
level module must remain idle. During this idle period, HSIO
cannot transmit new data from B to A due to the lack of
incoming data from the top-level module, resulting in pipeline
bubbles that expose otherwise hidden communication latency.

Fig. 8: CTDM partitioning for HSIO latency hiding (a) with
ODC FF copy on each FPGA, (b) without IB interleaving, and
(c) with IB interleaving.



Fig. 9: Partitioning cut wiring count reduction in CTDM: (a)
baseline, (b) cut made in between CB and IB.

This behavior undermines the benefits of CTDM by creating
visible latencies in the inter-FPGA dataflow.

2) CTDM Partitioning for reducing inter-FPGA wiring:
In most cases where manual partitioning is used, cuts within
the CTDM module can be avoided, thereby preventing the
performance degradation described earlier. In fact, due to
the reduced wiring between CB and IBs compared to the
baseline design (Figure 9(a)), placing a cut between CB
and IBs is the optimal partitioning strategy (Figure 9(b)).
Automatic partitioning tools, such as the ZeBu compiler, also
tend to insert cuts between CB and IB, as they are unaware of
potential performance penalties. In most cases, this remains
a favorable design choice because it minimizes the wiring
required between FPGAs. Figure 8(a) illustrates how this cut
can be implemented using four HSIO channels. Note that we
have two identical copies of ODC FF in both FPGA A and B
devices. This makes an immediate calculation in CB possible
when receiving input values from ISC in FPGA A.

3) IB Interleaving for Latency Hiding: To mitigate per-
formance degradation while retaining the wiring efficiency
of inter-FPGA communication, interleaving IBs from two
independent CTDM operations can hide HSIO latency. The
root cause of incomplete HSIO pipeline utilization is data
unavailability: the top module cannot send new data until it
receives output from the previous CTDM cycle. To address
this, we introduce two parallel pipelines that share the same
CB, allowing better HSIO channel utilization. Figure 8(b)
shows two independent CTDM operations each using one
HSIO channel, and Figure 8(c) illustrates latency hiding by

interleaving two IB groups using a shared CB and a single
HSIO channel in an alternating (“ping-pong”) manner. Fig-
ure 10(a) shows the timing and latency breakdown of a CTDM
operation partitioned across FPGA A (CB) and FPGA B (IBs).
At each top clock edge, data enters the CTDM module, travels
from FPGA B to A and back through HSIO, and returns to the
top module (the A-to-B return path is omitted for simplicity).
Figure 10(b) depicts a baseline CTDM timing without ODC
FF copy and IB interleaving. Four data frame transmissions
from ISC to CB in each channel are shown between top
clock edges, leaving idle gaps (bubbles) that decrease overall
simulation throughput. Figure 10(c) shows how alternating
data transmission between two IB groups via MUX selection
keeps the HSIO link fully utilized while using only one HSIO
channel. This ping-pong scheduling fills the pipeline and hides
latency, enabling a higher top clock frequency and improved
simulation performance.

IV. EVALUATION

A. Experimental setup

We evaluated our proposed method using three designs: a
neural engine (NE), NE with a system-on-chip (NE+SoC), and
NVDLA [37]. When PCIe FPGA is used, the test system has
Intel’s i9-12900 CPU with 32 GB DRAM. For mapping de-
signs to Synopsys ZeBu 5 server [12], we utilized Synopsys’s
ZeBu compiler. In all cases, a CTDM TDM ratio of 16 was
applied to optimize performance and resource usage.

To fairly compare our CTDM approach with the MUX-
TDM design proposed in [21], we adopted their function
merging and coarse-grained resource sharing strategy to max-
imize resource savings. In addition, their method reduces the
number of multiplexers and demultiplexers inserted through
MUX propagation and sharing optimizations that merge re-
dundant logic. Additionally, we observed that demultiplexers
can often be avoided by using registers with enable signals to
latch outputs conditionally, thereby conserving valuable MUX
resources on the FPGA.

1) Neural Engine (NE): NE is the core of our proprietary
chip that performs multiply-accumulate (MAC) operations for
deep learning workloads. NE features a 4MB scratch pad and

Fig. 10: Our inter-FPGA latency-hiding method illustrated in the timing diagram: (a) the latency breakdown for a typical HSIO,
(b) CTDM without IB interleaving, and (c) CTDM with IB interleaving.



Fig. 11: Overview of NE partitioning on FPGA with CTDM.

provides 16 TFLOPS of compute performance. Its architecture
consists of vector processors, tensor processors, and load/store
units. The tensor processor is composed of 128 MAC units,
while the vector processor includes 16 MAC units. Both have
a repeated logic pattern to which CTDM can be applied. To
simulate NE, we used a system composed of a CPU and two
AMD U250 FPGAs (Figure 11).

2) Neural Engine with System-On-Chip (NE+SoC): In the
larger version of our NPU design, each die contains 16 NEs,
and four dies are combined to form a single chiplet. Also,
this chiplet includes a system-on-chip (SoC) with NEs. The
SoC includes components such as an SRAM buffer, a DMA
engine, a PCIe controller, and a network-on-chip (NoC). To
simulate NE+SoC on FPGA, we used Synopsys ZeBu 5.

3) NVIDIA deep learning accelerator (NVDLA): To
demonstrate CTDM’s effectiveness, we also used the open-
source NVDLA [37]. In this test, the largest NVDLA con-
figuration nv full, which includes 2,048 INT8 MACs, 1,024
MACs (INT16, FP16), and a 512 KB buffer, was used.

CTDM was applied to the convolution MAC array (CMAC)
and the convolution accumulator (CACC) of NVDLA’s archi-
tecture. The CMAC consists of 16 MAC cells and each of the
MAC cells consists of 64 16-bit multipliers and 72 adders. To
simulate NVDLA, we used a single U250 device.

B. Result and analysis

1) Resource utilization: In all three experiments across NE,
NE+SoC, and NVDLA, a significant reduction in the use of
LUT and FF was observed.

For the NE experiment, Figure 12 illustrates the LUT usage
for each CTDM component in the original baseline implemen-
tation, the DSP-mapped version, the MUX-TDM version, and
the proposed CTDM-applied version. Additionally, it shows
the LUT capacity limit for the VU19P (ZeBu) and U250
FPGA devices. In the early stage of our research, we mapped
arithmetic operations onto DSP blocks to reduce LUT usage on

TABLE II: Resource count comparison of baseline design,
MUX-TDM, and CTDM for NE and NVDLA.

Type Design Baseline MUX-TDM CTDM

LUT NE 5.55M 2.64M (48%) 1.54M (28%)
LUT NVDLA 3.31M 2.71M (82%) 1.11M (34%)

FF NE 2.15M 2.24M (104%) 1.21M (56%)
FF NVDLA 6.17M 6.17M (100%) 1.09M (18%)

TABLE III: LUT count comparison of baseline design, MUX-
TDM, and CTDM for NE and NVDLA subunits.

Design Subunit Baseline MUX-TDM CTDM

NE ld, st 291k 405k (139%) 84k (29%)
NE vector0 419k 166k (40%) 65k (16%)
NE vector1 521k 194k (37%) 81k (16%)
NE tensor 3,539k 1,394k (42%) 606k (17%)

NVDLA CMAC 728k 123k (17%) 102k (14%)

the FPGA. This DSP-mapped version of the design required
four engineers working for six months and resulted in only
a 20 percent reduction in resource utilization. In comparison,
CTDM achieved a 71% of LUT reduction in less than 12 hours
using an automated compiler flow.

For the NE+SoC experiment, we used ZeBu 5 server for
simulation. Without LUT reduction, simulation was impossible
since it requires 204 AMD VU19P FPGAs. However, with
CTDM, we implemented it using 144 FPGAs, the exact
number of FPGA chips included in three units of ZeBu 5.

For NVDLA, the reduction ratio is 66.5% for LUT and
82.4% for FF. To the best of our knowledge, our work is the
first to deploy the full variant of NVDLA on FPGA without
removing its modules. The only other work [38] deployed
nv full on the Amazon EC2 FPGA cloud using FireSim [5],
but removed the INT16 and FP16 convolution engines and
wrapped the NVDLA RTL as a black box, leaving FireSim’s
optimization functionalities unavailable to NVDLA. In our
experiment, their stripped-down NVDLA only takes 479k
LUTs and 351k FFs on U250 FPGA without any resource
sharing applied. Table II and Table III present the comparison
of resource counts in the FPGA deployment of NE and
NVDLA in the baseline, MUX-TDM, and CTDM schemes.

2) Routing congestion and logic depth: Comparing the
three conditions—baseline, MUX-TDM, and CTDM—shows
that CTDM reduces both total net count and total fanout. These
two reductions help reduce routing congestion. We tested
three configurations on the U250 FPGA: baseline 16 MAC

Fig. 12: LUT reduction result for NE.



Fig. 13: NVDLA CMAC logic depth histogram.

cells, MUX-TDM, and CTDM. Due to routing failure, nv full
with MUX-TDM could not fit, so we implemented only the
NVDLA CMAC for evaluation.

From the experiments, we obtained the following metrics:
a total sum of fanout, the highest fanout, the maximum logic
depth, and the number of nets with the highest logic depth.
Table IV shows that CTDM reduces the net count by 44% and
the sum of fanout by 23% compared to MUX-TDM.

Compared to baseline, CTDM increased the maximum logic
depth by 1 but reduced the net count from 2,048 to 128 at
this depth. In contrast, MUX-TDM maintained the same net
count but increased the logic depth by 3. CTDM reduced the
number of nets with the maximum logic depth by a factor of
16, corresponding to the TDM ratio used in the experiment.

Figure 13 shows the histogram of logic depth for the CMAC
in baseline, MUX-TDM, and CTDM schemes. The histogram
analysis shows that MUX-TDM increases the maximum logic
depth of the baseline by 3, while CTDM increases it only by
1 and reduces the occurrences by 16 times. This reduction
is consistent except at depth 0 and 1, due to shift registers
inserted between combinational logics. Logic depth affects
critical path delay in static timing analysis (STA), while the
number of wires affects routing congestion.

In this context, CTDM achieves better results in reducing
routing congestion compared to MUX-TDM, allowing nv full
to fit on a single U250 FPGA.

3) Multi-FPGA Simulation with CTDM: To evaluate
CTDM in a multi-FPGA environment, we compared on-
premise FPGAs (e.g., U250) and Synopsys ZeBu using the NE
design. On ZeBu, we applied CTDM without latency hiding
and relied on its automatic partitioning. On U250, we com-
pared CTDM against a baseline using the same partitioning
but without any TDM techniques.

In all cases, simulation speed was measured by the slowest

TABLE IV: Detailed results in resource and routing reduction
of NVDLA CMAC.

Baseline MUX-TDM CTDM
# of Instances 1 16 16 16

Total # of nets 62k 993k 206k 116k
Sum of fanout 345k 5,515k 1,022k 787k
Max. fanout 14k 14k 26k 14k

Max. logic depth 34 34 37 35
# of max. logic depth nets 128 2048 2048 128

TABLE V: Operating frequency of NE deployed on two
FPGA-based devices.

Device CTDM
applied

Top freq.
(kHz) FPGA counts LUT count

(% per one FPGA)

ZeBu N (1:1) 57.8 VU19P×5 5.5M (134%)
ZeBu Y (16:1) 11.4 VU19P×1 1.6M (39%)

U250 N (1:1) 318 XCU250×5 5.5M (318%)
U250 Y (16:1) 97.4 XCU250×2 1.6M (92%)

U250 Y (16:1)
+ latency opt 397 XCU250×2 1.6M (92%)

clock. As shown in Table V, CTDM on U250 achieved
397 kHz, outperforming ZeBu without CTDM (57.8 kHz).
Section II-C notes that, ZeBu limits user-level optimization
and prevents customized inter-FPGA communication.

Despite a theoretical 16x slowdown from its TDM ratio of
16, CTDM reduced FPGA usage on ZeBu by 5x with only a 5x
performance penalty. This illustrates a performance–resource
trade-off: CTDM enables resource savings and multi-tenancy
on server simulators, but performance benefits are more sig-
nificant in user-controlled, on-premise environments.

4) Simulation speedup: By selecting specific workloads
and comparing the CPU-based approach against the proposed
CTDM, a significant improvement in simulation speed was
observed. We compared the simulation performance of the
Synopsys VCS running on a CPU with that of our CTDM
method on FPGA. For the NE case, the simulation took 372.8
seconds on the CPU using the VCS simulator, whereas it com-
pleted in just 0.6 seconds on our FPGA-accelerated simulator.
This demonstrates a 621× speedup in simulation time with
our proposed method. The workload used in this test is our
matrix multiplication test pattern for our chip’s functionality
verification. For NVDLA, the simulation on the CPU took
0.88 hours, while the FPGA simulation completed it in just
0.867 seconds, achieving a 3,653× speedup for the AlexNet
experiment. Furthermore, we compared our approach to [38]
for running quantized YOLOv3 in INT8 format. FireSim with
NVDLA processed one frame in 0.133 seconds, whereas our
method took 0.358 seconds, which is 2.69 times slower, but
with 43% fewer LUT resources without modifying NVDLA.

V. CONCLUSION

This paper investigated mapping large NPU designs with
repeated logic patterns to FPGAs in a resource-efficient man-
ner. Using a novel chain-based TDM (CTDM) technique,
we achieved a 66.5% reduction in LUT utilization and an
82.4% reduction in FF utilization in FPGA mapping of the
NVDLA design. Furthermore, to extend CTDM to multi-
FPGA simulation, inter-FPGA latency-hiding technique with
the partitioning strategy was proposed. The implementation of
our own NPU core design in U250 demonstrated a 24.8%
improvement in the operating frequency with fewer FPGA
boards. Ultimately, we successfully applied CTDM to a mas-
sive 4-die chiplet NPU on ZeBu 5 server, mapping the entire
design onto just 144 VU19P FPGA chips.
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