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Abstract

This paper proposes a novel approach to accelerating large ASIC de-
sign simulations on FPGA through a Module Multiplexing Method
(MMM) and its automatic compiler. Leveraging a resource-sharing
technique based on Time-Division Multiplexing (TDM), this method
achieves a 93.8% reduction in resource utilization on FPGA. Com-
pared to the conventional multiplexer-based TDM resource-sharing
technique, our shift register-based TDM reduces the total sum of
fanout by 85.7%, significantly alleviating routing congestion on
FPGA. To scale out and accommodate the size of large Application-
Specific Integrated Circuit (ASIC) designs, we are using a multi-
FPGA environment to deploy our simulator. Our inter-FPGA com-
munication strategy for MMM reduces interface link latency by
utilizing TDM merged with a novel design partitioning method. The
fully automated MMM compiler generates resource-efficient and
FPGA-accelerated simulation systems from design sources written
in various Hardware Design Languages (HDLs) such as Verilog,
VHDL, HLS, and Chiesel. This method is compatible with a broad
range of FPGA devices, from small on-premise boards with PCle
form-factor to server-grade hardware simulation platforms such as
Synopsys ZeBu. When applied to NVIDIA’s open-source machine
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learning accelerator, NVDLA, we could deploy NVDLA full vari-
ant on AMD U250 FPGA device, which would be impossible to fit
in a FPGA without MMM method. This approach demonstrated a
3,653x acceleration in NVDLA’s simulation time over Synopsys’s
VCS simulator on a CPU. By providing faster simulation results, it
can expedite the hardware-software co-design process, benefiting
both hardware and software developers. This method has already
been implemented in the simulation and verification of commer-
cial machine learning accelerator designs to evaluate calculation
patterns for Large Language Models (LLMs), and we successfully
emulated a 4-die 1024 TFLOPS chiplet using 144 FPGAs on Zebu5.

CCS Concepts

« Hardware — Board- and system-level test; Application spe-
cific processors; - Computing methodologies — Simulation
environments.
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1 Introduction

As the CMOS process nodes continue to shrink, the total number
of transistors that can be integrated into single chip has increased
and large-scale ASIC simulation presents greater challenges. In this
regard, Field-Programmable Gate Arrays (FPGAs) can be used for
fast-prototyping and testing of ASIC hardware designs. However,
due to the limited resources available on FPGA, deploying large
hardware designs on FPGA is challenging. To address this issue,
prior works have deployed large designs on FPGA clusters [3, 14,
18], as scaling out across multiple FPGAs becomes necessary when
the target design exceeds the capacity of a single FPGA device.

However, introducing inter-FPGA communication in the sim-
ulation system can pose a performance bottleneck. To alleviate
this problem, the authors of [13] investigated TDM based opti-
mization with an analytical approach. This work improved system
clock frequency by 7% in inter-FPGA routing, enabling the FPGA
cluster to scale out up to 400K nodes. Another research focused
on the FPGA 1/Os using time-division-multiplexing (TDM) [15],
aiming to decrease the maximum TDM ratio while satisfying the
inter-FPGA communication requirements. Nonetheless, none of
these works actually investigated applying TDM to the functional
modules for the reducing resource utilization and relieving routing
congestion. Another effort by [3] aimed to alleviate the bottleneck
in inter-FPGA communication. To avoid the link latency between
FPGAs, LVDS-based communication was employed; While LVDS-
based communication avoids link latency, the limited I/Os on Xilinx
FPGAs reduce its bandwidth. With clock synchronization, LVDS
speed drops to 100 Mbps, requiring 500 differential I/Os to match
the link speed of 25 Gbps of a 4-channel QSFP, making it unsuitable
for large design partitioning due to bandwidth limitations. Without
hardware systems that offer cable connectors for LVDS I/Os with
signal integrity enhancements, like Synopsys HAPS, using LVDS
for chip-to-chip communication is challenging.

Resource optimization is another major research direction for
FPGAs. Researchers explored various resource sharing techniques
to reduce the resource usage on FPGAs [7, 11, 16]. Sun et al. [16]
attempted to share multi-cycle pipelined modules for hardware
area optimization at a high level. This work employed an algo-
rithm that selectively applies resource sharing at the module scope
from a high-level hardware description; however, this approach
shows limitations to implement the architectures that are already
defined at RTL level. [17] explored module-wise reuse by applying
multi-threading to soft-cores on FPGA to mimic multi-core behav-
ior through resource sharing. However, this method is slow, as it
requires completely storing/restoring the internal states, which
is very time-consuming. Finally, TDM was applied to FPGA for
resource usage reduction by [7, 11]. These TDM techniques were
applied to logic and can reduce the resource usage on FPGAs by
trading off performance and routing congestion. Hadjis et al. [7] pre-
sented resource sharing on FPGAs with HLS. By analyzing the type
of operations and the logic resource used in specific FPGA devices,
they identified which operation should be selectively multiplexed
with TDM resource sharing to achieve better resource utilization.
Nangia et al. [11] proposed bit-level ALU sharing with additional
multiplexers for functionality selection and control logic absorption.
Although TDM-based resource sharing offers significant resource

savings and can be applied to already defined hardware architec-
tures, the multiplexing clock speed cannot be increased indefinitely
(e.g., overclocking), limiting the extent of resource sharing. Ad-
ditionally, TDM aggregates input signals and broadcasts them to
outputs after the TDM operation, which increases routing conges-
tion and negatively impacts the performance of the FPGA design.

While the ability to deploy large ASIC designs to FPGA for ac-
celerated simulation is important, usability is also a key aspect, as
it can reduce design time in hardware/software co-design itera-
tions. One crucial feature is automatic compiler support. Automatic
simulator generation is essential for applying resource optimiza-
tions, as manual coding would be inefficient and time-consuming.
Since hardware/software co-design involves frequent RTL modi-
fications and re-evaluation, an automatic compiler can smoothly
accommodate design changes without disrupting the design flow.
In this regards, a number of architecture/ASIC simulators have
been demonstrated to support automatic generation of their sim-
ulator system to many potential architecture designs. FireSim [9]
presents a high-performance compiler system with resource shar-
ing and automatic partitioning based on the Latency-Insensitive
Bounded Dataflow Network (LI-BDN) method. This approach de-
couples FPGA clock cycles from the target design’s clock cycles
while maintaining cycle accuracy. Additionally, with the LI-BDN
abstraction, FireAxe [18] was recently released, which supports
automatic partitioning of target designs for multi-FPGA mapping
on FireSim. Although FireSim’s compiler, FireAxe, optimizes LUT
usage through multi-threading, it does not yet support routing con-
gestion optimization or advanced resource utilization techniques,
leaving room for further exploration in FPGA-accelerated simula-
tion systems with compiler support.

At the industry level, systems such as Synopsys ZeBu and Ca-
dence Palladium offer automatic partitioning of large hardware de-
signs across multiple FPGA chipsets and provide FPGA-accelerated
simulation methods, making them both fast and user-friendly. How-
ever, these server-grade simulators are extremely expensive, and
despite multi-user tenancy, sharing them efficiently is challenging,
as server slots are often occupied by large design simulations. Fur-
thermore, design optimization techniques like TDM or resource
sharing are not supported, as they use consolidated clock system
that does not allow for user intervention, preventing users from
implementing their own optimizations.

To resolve these issues, we propose MMM (Module Multiplexing
Method) and its automatic compiler to generate custom FPGA-
accelerated simulation system with the following key contributions:

¢ MMM employs a resource TDM strategy that reduces LUTs
and Flip-Flops (FFs) resource utilization with small fan-out
requirement which helps easing routing congestion.
Unlike traditional TDM methods, MMM can be applied at
a module level, even when the module contains a complex
internal state changes and output logic that depends on both
input and the module’s current state.
Our MMM partitioning strategy reduces inter-FPGA band-
width requirements and reduces QSFP link latency between
FPGAs using a latency-hiding technique.
e The MMM compiler can be applied to any source design
written in HDL. It also supports a wide range of FPGA-based
target devices for deployment.
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MMM: FPGA-accelerated hardware simulator for resource-efficient deployment with automatic compiler

The remainder of this paper is organized as follows. Section 2
gives the preliminaries on the techniques typically utilized in latest
FPGA-accelerated simulators like how logic multiplexing can be
done on FPGAs and introduction on optimization of inter-FPGA
communication. Section 3 explains how our MMM strategy works
with differenciation from other TDM methods. In Section 4 and
Section 5, we explain our two target design, commercial chip2 we
designed and NVDLA which we used for evaluating the perfor-
mance and benefit of our simulation accelerator system. Section 6
presents the experimental setup and results, and Section 7 concludes
the paper.

2 Preliminaries

This section explains how FPGAs can be used for accelerating
large hardware design simulations. The technique of TDM and
optimization on inter-FPGA communication will be explained.

2.1 Time-Division Multiplexing

Time-Division Multiplexing (TDM) is commonly used for transmit-
ting and receiving multiple independent data streams over a shared
signal path, typically in telecommunications. However, on FPGAs,
this technique can also be utilized to share common logic resources
across different data streams, reducing the area of the logic design
at the cost of reduced hardware performance. Figure 1 illustrates
how the TDM method can be used for resource sharing on FPGA.

m MAC : x2+1 2xAg+1
m MAC : x2+1 2xBg+1
MAC : x2+1

J | I— I— L
(a) (b)

Figure 1: (a) MAC module with TDM ratio 4 applied. (b) equiv-
alent module before TDM application.

When the maximum operating frequency of the target hardware
is Fspec, the logic utilizing TDM must operate at N4 times slower,
where N4 is the multiplexing or TDM ratio. This typically results
in a design that is Nf,j4 times slower than a non-TDM design on
the same hardware.

TDM method is integrated into AMD’s Deep Learning Process-
ing Unit (DPU) IP design, which uses DSPs on FPGAs [1]. With the
Virtex Ultrascale+ DSP48 primitive’s maximum frequency at 775
MHz [2], applying a TDM folding factor of 16 limits system perfor-
mance to 48.44 MHz. Additionally, applying TDM at the module
level is challenging due to dependencies on the module’s internal
state and inputs. Furthermore, clock-crossing logic and multiplex-
ers (MUXes) must be inserted to maintain interleaved data order,
requiring manual identification and insertion of logic at specific
points in the design.

2.2 Optimizing inter-FPGA communication

To scale a design across multiple FPGAs, a monolithic design must
be partitioned and distributed across different FPGAs, requiring
2024-10-10 01:50. Page 3 of 1-11.
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inter-FPGA communication via LVDS-based connections or high-
speed interfaces like QSFP. While both enable high-speed com-
munication, LVDS has bandwidth limitations due to limited I/O
counts, and QSFP introduces link latency that degrades system per-
formance. TDM can increase logical bandwidth in both cases [22],
but it may still fall short of the partitioned design’s bandwidth re-
quirements. To ease this requirement, partitioning algorithms can
be used [4, 5, 21], but this is a complex graph partitioning problem
that requires detailed analysis and extra computation. Instead, we
use MMM to combine our novel partitioning strategy with TDM
bandwidth reduction, reducing QSFP link latency while meeting
the partitioned design’s bandwidth needs. This will be discussed
further in Section 3.4.

2.3 CPU Hosted Hardware Simulation with
FPGA Acceleration

The recent surge in developing accelerators for machine learning
applications has driven the need for architectures with thousands
of computing cores and massive parallelism. As chip designs grow,
simulating them on CPUs becomes increasingly difficult due to
the immense computational demands. FPGAs offer a solution with
faster hardware simulation speeds and programmability compared
to CPU-based simulations. However, deploying large designs en-
tirely onto FPGAs is challenging. To address this, we developed a
hybrid hardware simulation system that offloads compute unit and
computation-intensive logic to FPGAs, while simulating the rest on
a CPU in a conventional manner with software simulator. In our
simulator, the CPU serves as the functional model, and the FPGA
works as timing model, balancing computational load. Despite in-
troducing inter-device delays, such as PCle latency, this approach
improves scalability and allows for simulating larger designs with
fewer FPGA resources. Our system interfaces with software SoC
design simulators (e.g., Verilator, Synopsys VCS), leveraging their
debugging capabilities while accelerating high-load simulations
on the FPGA. To mitigate inter-device latency, we developed a
custom Linux driver for efficient data transfer, achieving near bare-
metal performance. Figure 2 provides an overview of our FPGA-
accelerated simulation system.

Neural Engine 0
Workload or Test Pattern S ey I
FPGA 1 é FPGA 2 *Xilinx IP
Task Manager 61) PCIE IP @ Aurora IP
Task Queue B | P AuroralP Compute Units
=
°le Sync Contol 3 £33, Tensor
R
5 ] Reg Berk g Processor
Priority Ctrl =
by = Load / Store GUIALOIRS
& Unit Logic Reduce
fEELo Scratch Pad 1/16 by MMM
Memory (4MB) ¢3 Neural DMA Vector Processor

Figure 2: Overview of FPGA accelerated simulator system
with MMM.
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3 Module Multiplexing Method

The Module Multiplexing Method (MMM) is a resource-sharing
technique based on TDM. Instead of using MUXes, MMM employs
a shift register chain, allowing data to flow consistently through the
pipeline. This eliminates the need for MUXes and associated control
logic before pipeline registers, simplifying TDM usage on FPGAs.
This also enables the development of an automatic compiler, as
complex control logic for managing data order is no longer required.
In the following sections, we will explain our technique with an
example case, which uses TDM ratio of four.

3.1 Proposed MMM Structure

=l — "CB (Compute Block) '
In1 3 1
—> Comb : F G P> . Combi : F 1
! :
' !
[
A L R e e 1
In2 S o
—> Comb : F nepPr 1B (Interface Block) | "
Ll
.}
In3 3
—> Comb : F H G P>
Ll g
— ¥
In4 3
—> Comb : F H G P>

(@)

Figure 3: (a) Original design with four parallel modules. (b)
MMM applied structure.

In Figure 3a, four identical modules are shown, consisting of
combinational logic and Flip-Flops (FFs) to hold internal states
of the logic. Within a single module, the module is divide into
two combinational logic. If the portion of combinational logic is
involved with output generation, it is marked as logic G and the rest
of the logic is named as logic F. Logic F gets inputs from the parallel
input source, Inl ~ 4, state register S; and pre-output register O; to
generate an input to the pre-output register Oy41 and the next state
of logic F, St4+1. On the output side, G gets inputs from In1 ~ 4 and
pre-output register O; to generate output of the module, Out1 ~ 4.
In summary, the relationship between each component of the logic
can be formulated as Equation (1).

(St+1,Ot+1) = F(In, S, Oy) a
Out = G(In, Oy) )

To begin with, we select one ‘target module’ from four identical
modules and apply our resource-sharing technique. MMM then

creates three types of shift register chains and two types of sub-
blocks using this target module. The configuration of MMM is
shown in Figure 3b. Below explains each components of MMM.

o Input serializer chain: To share logic F across multiple data
pipelines, input data is conveyed through an input serial-
izer chain, shown as the red logic in Figure 3b. Using input-
selecting MUXes, the input value is captured and the serial-
ized input data is pushed to the shared logic F.

State register chain: To store an internal state of F, original

state registers, S, are reconstructed as a shift registers. In

AMD FPGA, this can be mapped to Shift Register Look-up

table (SRL) primitive. This saves wiring resources by elimi-

nating the connection between FFs.

e Output deserializer chain: To preserve the behavior of the
original parallel modules, logic G cannot be shared, and an
original instance of logic G must be maintained for each
data pipeline. The output shift register chain O is fed back
to logic F when the output of current cycle is required for
generating new outputs in the next cycle (e.g., in cases of
accumulation).

e CB: Compute Block (CB) is a resource-shared compute logic

with logic F and a state register chain. This submodule occu-

pies the largest area on the FPGA, and the most significant
resource savings are achieved by applying TDM to this sub-
module.

IB: Interface Block (IB) composed of an single FF from input

serializer chain, one FF from output deserializer logic, and

one logic G. IB captures input and output from previous

cycle, and deliver it to CB to generate output value. In MMM

with folding ratio of, Nfo1q = 4, we need four IBs and one

CB logic.

3.2 MMM Operation

G (i) (i) (iv)

- Top CLK 1
Combi : F - . B B B
MUX select __: :
Input . - H
seraizer © [T [T ML LI L1
H .sb .sC .sd ok—— Y : :
— o LML T
I TOP [Tex:Te: 1Ter :

I, Dol iz 13 14 Tl TP

I D13 14 12,1113,
I 13, 14, 13(,1514(,]
0, o1t501t§o1t§ozt 03, 04 01,,,501[,101“;02(,,

Op [02::02::02::03; 04; O1,,02,,02;02,03,

Oc | 03;:03;}03;:04 OL,;02,,03,03,, 03,04,

Oq | O4::04;: 04 01, 02,; 03,1 04,04, ; 04Ol

Figure 4: Clocks and pipeline operation during ¢ to t + 1 for
MMM operation.

Figure 4 shows how MMM operates with timing diagram for
each clock domain. All clocks in the diagram originate from the
same source but are gated based on their purpose. The TOP module
is defined as the remaining logic in the design, excluding the MMM
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module. The operation begins by launching the TOP clock (CLK)
outside of the MMM module at cycle (i). The TOP module uses
the output from MMM module to generate its state for the next
cycle, which updates the input value entering MMM module. To
pass this input value to IB, the MUX select is adjusted to store
the input value in the input serializer chain, which then captures
the value at cycle (ii). In the next cycle, CB calculates the value
of the input of two register chain, S; and Oy, using the output
values of register chains, S, and O, at cycle (iii). This process is
repeated for the number of folding iterations, N¢,4. In each cycle,
the newly calculated value from CB is added to the end of the output
deserializer chain and state register chain. As cycles progress, the
values at output deserializer chain shift positions, and after the
N fold iterations, the first calculated value, O1441, reaches to the
head of output deserializer chain, O,. At this point, CB calculated
values, O141~04;41, fills the output chain. The output of MMM
module is then computed using values in output chain, O;~O, and
these results are fed back to the TOP module for further processing
at cycle (iv). The pipeline operation of the shift register chain,
Sa~Sg4, follows the same timing with output deserializer chain as
shown in Figure 4.

3.3 MMM Compiler

This compiler, based on TCL scripts, works automatically with
AMD’s Vivado to convert the target design into MMM-applied
logic, allowing it to function across multiple designs and diverse
environments. Figure 5 shows the entire procedure of MMM and
how they can be deployed to different target designs. Algorithm 1
shows the pseudo-code for the initial part of the IB generating
process for obtaining output FF and removing internal cell.

MMM Compiler
(Module Multiplexing Method)

RTL J Chisel / HLS J Netlist

l Synthesis Synthesis
- Split TOP
| testb ”;]Se”v heral |‘7 black box split module
estbenc| ,Iperlp eral MULCAL
Y k2
VCS Zebu Xilinx SKLWRP MMM  Link |
Synthesis Synthesis
1
Zebu Xilinx Write
Implemetation| |implemetation Netlist

Figure 5: Overview of MMM application flow.

The MMM compiler is divided into three main processes: (1)
IB generation, (2) CB generation, and (3) linking them to the top
module. (1) In IB Generation stage, IB removes the original in-
ternal combinational logic and FFs, then creates a chain of FFs for
the input serializer with MUX and output de-serializer. (2) In CB
Generation, the pre-output FFs O are removed and replaced to
the ports later to be connected to IB, while the state registers S
are replaced with state register chain using AMD SRL primitive.
(3) In top module link process, our compiler runs synthesis on
the top module with the target module replaced by black boxes.
Once synthesis is complete, clock control logic and CB are inserted
into the top module, and the black boxes are replaced with IBs.
The ports in the top module, IB, and CB are then stitched together,
2024-10-10 01:50. Page 5 of 1-11.
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followed by the netlist export(.v, .edif) process. The MMM compiler
gets the top module name, target module names, and the synthesis
file list. Multiple modules can be folded, and by just adding target
module names to the compiler, it will automatically run the tasks
in parallel. However, in case the target module contains parallel
modules nested in a 2D structure, applying MMM is not currently
supported but is planned for future development.

Algorithm 1 Pseudocode of finding/removing output-related FFs

: find = GetOutPort(netlists)

: for itemin find do

if item == FF then
output_ff.insert(FF)

else
connected_primitives =
netlist. GetConnectedPrimitive(item. in)
find.insert(connected_primitives)

end if

: end for

R A A T A

[
N = O

: all_ff = GetAllFF(netlist)

: for itemin all_ff do

if item is not in output_ff then
netlist.RemoveFF (item)

end if

: end for

oy
N G W

3.4 MMM FPGA Split

In order to partition large designs across multiple FPGAs, MMM
offers significant advantages. This section introduces two methods
for partitioning FPGAs when applying MMM and explains how
these differ from traditional approaches. In a Neural Processing
Unit (NPU), the compute engine uses many LUTs and wires due to
its complexity. Typically, the output bus-width in compute engine is
smaller than that of other module because of internal accumulation
or reduction. With the repeating logic patterns in the compute
engine, we can apply resource sharing by selecting the compute
engine as the target module in our MMM.

Traditional Partition. Figure 7a shows traditional FPGA parti-
tioning without applying MMM. In this setup, each identical target
module is assigned to a separate FPGA, while the TOP module,
excluding the target modules, is assigned to another FPGA. Since
we have only five FPGAs in this scenario, the TOP module uses
full four High-Speed Input Output (HSIO) interfaces, while each
FPGA with a target module is connected with only one HSIO to
communicate with the TOP module. Figure 6a shows the timing
diagram for the traditional partitioning method. Upon the rising
clock of the TOP module, data is transferred to the target module.
At the same time, target module needs to send output data back
to the TOP module. Here, TOP clock only goes high once data
transmission to and from the target module is completed.

MMM Basic Partition. In MMM basic partitioning, the CB
and output register chain are placed on one FPGA, while another
FPGA contains the TOP module with four Interface Blocks (IBs).
Figure 7b illustrates how the modules are partitioned and assigned
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Figure 7: MMM partition. (a) Traditional Partition (b) MMM
Basic Partition (c) MMM Basic Partition abstraction (d) MMM
Advanced Partition abstraction. The red line represents the
input register chain, while the blue line indicates the output
register chain.

to each FPGA. Unlike in Figure 3b, both the Compute Block (CB)
and the Interface Block (IB) have an output chain register. This

design eliminates input/output dependency between the two FP-
GAs by maintaining synchronized copies of the output register
chains on both sides. As a result, the FPGA with four IBs can send
data immediately without waiting for data from the FPGA with the
CB block, decoupling the input serializer chain from the output
deserializer chain. In MMM basic partitioning, the four FPGAs, pre-
viously had one target module for each, are replaced with a single
FPGA containing the CB module. Four HSIO connections are used
between the two FPGAs, providing faster inter-FPGA bandwidth
compared to traditional partitioning methods. Figure 6b shows the
timing diagram for MMM basic partitioning, where four input reg-
ister chain data transmissions to the CB module and four output
register chain transmissions are placed between TOP CLK rising
edges. Although the use of four HSIO interfaces enables 4x faster
data transmission, the total amount of data transmitted between
TOP CLKs must still match the TDM ratio, and the response data
from the CB must also be transmitted to the TOP module to finish
one trip of data transaction. This setup introduces two HSIO la-
tencies, making it slower than traditional partitioning, which only
incurs one HSIO latency for data transmission.

MMM Advanced Partition. To further reduce link latency in
HSIO, we developed a new partitioning strategy called MMM Ad-
vanced Partition. Figure 7c shows an abstracted version of basic
partitioning. In this scheme, the TOP FPGA has four IB modules
that send the values from the input and output register chains to
CB’ (a CB module with an output chain register copy) through the
HSIO interface. In basic partitioning, the TOP clock can only go
high once all chain data is received, adding delay in inter-FPGA
communication. In contrast, advanced partitioning resolves this by
bundling two IB modules into a set and sending data to CB’ in a
ping-pong manner using two IB module bundles. Figure 6c¢ illus-
trates the operating clock for IB modules, where IB0, IB1, and IB2,
IB3 alternate sending data through HSIO via MUX selection. The
MUX alternates between the IB bundles, selecting the input register
chain to accept data. Similarly, CB’ output data is received through
HSIO by selecting the destination IB bundles. In our design, the
target module operates asynchronously with the TOP module, thus
no clock domain crossing (CDC) logic is required. By alternating
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between IB bundles and sending data in this manner, HSIO latency
is hidden, allowing the TOP clock frequency to increase.

3.5 Routing congestion reduction in MMM

|—> MUX TDM Module -| |—>

MMM Module —I
I -H—r o>

ol

i o

Extra logic Depth
(@) (b)

Figure 8: MUX vs. MMM fanout comparison. (a) MUX (b)
MMM

In FPGAs, high-fanout nets usually refer to multiple control
signals (e.g., set/reset, clock enable, and clock), which are common
and difficult to route [8]. In MUX-based TDM, fanout issues worsen
due to the increased fanout in the data pipeline. In MMM, routing
congestion is drastically reduced by addressing the major causes of
(1) fanout, (2) resource usage, and (3) the number of wires. Due to
the unavoidable high fanout on control signals, we are going to only
discuss fanout in data pipeline. Since we use scan-chain-like shift
registers instead of large demultiplexers, we only have maximum
fanout of 2 at the output regardless of the size of multiplexing
ratio. This is useful in the case where we need to use a higher
multiplexing ratio, since large multiplexing ratios will require large
1-to-N demultiplexers with the fanout of Nyy. Figure 8 shows the
comparison of fanout size in TDM and MMM.

The benefit of high multiplexing ratio, Ny, g, is the reduction in
resource utilization. Since we can reduce resources used in module
by 1/Nf,14 and the effect of reduction increases as the size of mul-
tiplexed module increases. In MUX-based TDM method, applying
resource sharing is not easy when there is a data pipeline. If there
is a data pipeline, MUXes for ordering data needs to be inserted
in each data pipeline stages. However, in MMM, we only need to
insert SRLs to hold intermediate values for multiple data pipeline.
In Figure 3, chain FF S is implemented with SRLs. Since SRLs can
be implemented by using a dedicated LUT unit, no wiring between
pipeline stages is necessary and thus wiring burden will be also
reduced.

Overall, optimization of these three factors (fanout, resource
usage, and the number of wires) reduces the routing congestion
in our proposed MMM method. In Section 6, we compare a MUX-
based TDM version of NVDLA with our Shift Register-based MMM
method in terms of resource utilization, routing congestion, and
logic depth.
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4 FPGA Verification on Commercial Product

To improve the performance of the machine learning accelerator,
both adding more neural engines and making bus connection to
more SoC components makes FPGA verification more challenging.
In our Company’s upcoming commercial chip2, the neural engine’s
performance has increased four-fold compared to the previous com-
mercial chip1 design, and the number of neural engines has doubled.
With four dies combined into a single chiplet, this has led to a 32x
increase in performance and 8% increase in logic area compared to
chipl. In the chip1 project, we used eight U250 boards and Synopsis
HAPS-100 (HAPS) for verification, but due to the increased design
size and complexity, these systems could not be used for the new
chip2. To facilitate the development and verification process of
chip2, we introduced ZeBu4 and ZeBu5. However, due to the large
resource usage, verifying all four dies was not feasible, and even
single-die verification could only be accessed by a single user at a
time. Given the need for a simulation and verification system for
ASIC prototyping, for developing a software environment, and for
modifying and verifying machine learning models to run on our
company’s hardware, multiple teams require access to the simu-
lation system. This situation prompted us to develop a method to
either provide on-premise simulators for individual users or reduce
resource usage on the ZeBu servers.

4.1 Commercial chip architecture

In our machine learning accelerator design, computing core which
is called, Neural Engine, is used as target module for applying
MMM. The logic compartments that process data are called as,
Tensor Processor and Vector Processor. In most cases, computing
elements or computing array which has repeating logic pattern is
used as CB logic. Inside our company’s Neural Engine, there are
4MB Scratch Pad, Vector Processor, Tensor Processor (4 TFLOPS,
16 TOPS), Load/Store Unit, DMA, Task Queue, and Sync Control
unit. We applied MMM to Tensor Processor and Vector Processor,
these processors contain repetitive structure. Tensor Processor is
composed of 128 MAC (Multiply—-accumulate) and Vector Proces-
sor has 16 MAC. To trade-off between performance and resource
utilization reduction, we set the TDM ratio of 16 for these modules.

4.2 FPGA Implementation

To verify the functionality of neural engine, we implemented it
on FPGAs. The initial version (chip1 v0) of the neural engine was
mapped to the FPGA, as development progressed, the number of
neural engine calculators increased (chip1 v1), making it impossible
to fit onto the FPGA. We modified the code to reduce FPGA LUT
usage and manually mapped the arithmetic operations to DSPs. In
the process, a team of four engineers worked for about six months,
achieving a 20% reduction in LUT usage. But as the engine grew
larger (chip2 v0), the DSP mapping method was no longer effective
due to an increased complexity in our processor design. To address
this issue, we invented MMM, and a single engineer was able to
achieve a 42% reduction in LUT usage with just a few hours of
compiler run.
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4.3 ZEBU Implemetation

When emulating our SoC design on the ZeBu system, resource opti-
mization was essential due to the large size of the multi-die chiplet
architecture, which limited the multi-tenancy capabilities of the
ZeBu server [20]. The emulation environment was critical for ev-
erything from architectural exploration and firmware development
to verification during the project’s initial stages. Consequently,
we extended MMM’s applicability to ZeBu to improve resource
utilization in server-grade emulation systems as well.

Contrary to our initial assumption that the MMM-applied netlist
(-v) could run directly on ZeBu, several modifications were required.
Since ZeBu’s emulation system uses a single clock source, clock
gating was not feasible which is necessary for MMM. To resolve
this, we adjusted Flip-Flop (FF) operations by using enable signals
instead of generating new clocks with Integrated Clock Gating cell
(ICG). Additionally, when exporting a netlist from AMD’s design
tool, design elements with FF (FDRE, FDCE, FDPE, FDCE) using
the ‘IS_INVERTED’ property were generated. We modified these
elements with FF with inverter attached, as these designs are spe-
cific to AMD FPGA products. To further develop and integrate our
MMM method into Synopsys’s simulation toolchain (e.g., ZeBu),
we collaborated with Synopsys to create an automated flow that
seamlessly applies our method to their system. We believe this
partnership will improve the emulation environment’s efficiency
by optimizing resource utilization and reducing simulation runtime.
This, in turn, enhances system sharing, allowing multiple users to
work concurrently and ultimately accelerating the time-to-market
process.

5 NVIDIA Deep Learning Accelerator (NVDLA)

For the comparison of our MMM method to other accelerated hard-
ware simulators, we deployed NVDLA [12], an open-source archi-
tecture, onto FPGA. We first analyzed the NVDLA architecture and
carefully selected the modules to apply MMM for optimal resource
utilization on FPGA while maintaining performance for simulation.
Additionally, NVDLA was chosen for our experiments because it is
a widely known open-source hardware with many related studies,
making it ideal for comparison.

5.1 NVDLA architecture

NVDLA has a modular architecture and thus can be easily con-
figured, scaled, and designed toward target applications. Figure 9
shows the abstracted version of NVDLA architecture deployed for
hardware simulation on FPGA.

NVDLA primarily targets small IoT and embedded devices. How-
ever, the full NVDLA configuration is still too large to fit on the
U250 FPGA board as is. By applying MMM method, we success-
fully reduced design size of the NVDLA. In Section 6, we report
the amount of resource reduction we can achieve with MMM on
NVDLA. Also, instead of using a microprocessor for driving NVDLA
core, we implemented our own state machine based test pattern
injector since it will take less resources then a soft-core micropro-
cessor leaving more space to NVDLA to be implemented. NVDLA
consists of five main modules: SDP (Single Data Point Processor),
PDP (Planar Data Processor), CDP (Cross-channel Data Processor),
RUBIK (Data Reshape Engine), and the Convolution Pipeline, which

NVDLA
CMAC
MAC Cell
Multiplier X X16
int16 / fp16 64
X 72 Ny g Applied MMM
. 1 . —
int16 /fp16_| X 7 - -11/16 LUT Reduction £
int16 act as 2 x int8 .“C_>
; = C%ﬁ;?ol £
NHE::
| 2 g B
| CDMA | | copP H- 2 =
o
-
I—)|Aribiter DRAM | SRAM |Aribiter

Figure 9: NVDLA architecture deployed on FPGA for simula-
tion acceleration.

includes components such as DMA, Buffer, Convolution Sequence
Controller (CSC), Convolution MAC array (CMAC), and Convolu-
tion Accumulator (CACC). We implemented resource sharing in
the ‘MAC cell’ in CMAC. Since the MAC cell repeats 16 times, it
was an optimal candidate for applying MMM. The implemented
configuration of NVDLA includes 2048 Int8 MACs, 1024 INT16
MACs and FP16 MACs, and a 512KiB buffer, corresponding to the
largest ‘nv_full’ configuration of NVDLA.

6 Experiments

This paper applies MMM for two machine learning accelerator de-
signs, commercial chip2’s Neural Engine (NE) and NVDLA. For NE
and its SoC emulation we have tested our design in two environ-
ments. First, we utilized ZEBU5, which consists of 144 AMD VU19P
FPGAs. In another experiment which represents an on-premise
FPGA simulation use case, we partitioned the NE and assigned
each partition onto two AMD U250 FPGA boards. For the NVDLA
experiment, we only used one U250 board. To connect the FPGAs,
we utilized AMD Aurora IP, leveraging the Quad Small Form factor
Pluggable (QSFP) ports on the boards. In all on-premise FPGA set-
tings, the test system has Intel’s i9-12900 CPU with 32 GBs DRAM
and FPGA cards are attached to the PCIe 3.0 x16 slot. Figure 10
shows our FPGA-accelerated system running NE. The host system
runs Synopsys VCS simulator and this simulator is connected to
the FPGA through the Programming Language Interface (PLI) of
VCS to invoke C++ functions in the FPGA driver. This driver is
developed by using AMD’s XDMA module which is published as
an open-source Linux driver [19].

Resource Utilization Reduction. Using MMM significantly
reduces resource utilization on FPGA. Figure 11 illustrates the LUT
usage for each element in the original, MMM-applied, and DSP-
mapped versions of NE, Additionally, it shows the LUT capacity
limit for the FPGA models VU19P and U250. The DSP-mapped
version required four engineers to work for six months, achieving
a 20% reduction. In comparison, MMM achieved a 71% reduction
in just 12 hours of compiler run. The same MMM NE was imple-
mented on both the ZeBu system and a two-FPGA simulator. We
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Figure 10: NE simulation system with two FPGAs.
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Figure 11: LUT reduction result for NE.

used Zebu5 for the emulation of our entire SoC. Without LUT re-
duction, emulation was impossible with 204 AMD VU19P FPGAs.
However, after applying MMM, we were able to implement it us-
ing 144 FPGAs (Zebu5 3U). For NVDLA case, a reduction ratio is
66.48% for LUT and 82.4% for FF. To the best of our knowledge,
our work is the first to deploy the full variant of NVDLA on FPGA
without removing component. The only other work that deployed
‘NVDLA full’ is on Amazon EC2 FPGA cloud, but it removed the
convolution engines for INT16 and FP16 [6]. Table 1 shows the
extent of resource reduction achieved by our deployed simulation
accelerators.

Table 1: Resource utilization of NVDLA for MMM vs. vanilla
NVDLA.

LUTs FFs  DSPs

Full_vanilla 331IM  6.17M 459
Full. MMM 1.11IM  1.09M 402
Reduction (%) 66 82 12

Routing Congestion Reduction. MMM not only reduces re-
source use but also achieves routing congestion reduction. Through
experiments using CMAC, we obtained the following metrics: LUT
count, NET count, Sum of FanOut (sum of FO), highest FanOut (high-
est FO), logic depth, and the logic depth histogram. Additionally,
we compared the results for ORG16 (CMAC contains the original
16 MAC Cells), MUX16, and MMM16. Table 2 shows that MMM16
achieves reductions of 17% in LUT count and 44% in NET count.
In terms of FF count, MMM16 shows a slight increase compared
to MUX16 due to the shift-register-based implementation, which
inherently increases FF usage. The sum of FanOut also decreased
similarly, while the highest FanOut remained the same as ORG16.
Regarding logic depth, the number of nets at maximum depth is
indicated in parentheses. Compared to ORG16, MMM16 increased
2024-10-10 01:50. Page 9 of 1-11.
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Figure 12: NVDLA CMAC logic depth histogram.

the maximum logic depth by 1 but reduced the net count from 2048
to 128 at this depth. In contrast, MUX16 maintained the same net
count but increased logic depth by 3. Figure 12 shows the histogram
of logic depth for ORG16, MUX16, and MMM16. The x-axis repre-
sents logic depth ranges in specific histogram bins (e.g., [0,2] covers
depths from 0 to 2), and the y-axis indicates the number of nets
in each bin. In MMM16, the number of nets in each bin decreased,
except for the 0 to 2 range, suggesting that high logic depth nets
were reduced due to shift registers inserted between combinational
logics. The MUX16 shows increased logic depth with more nets
distributed in higher logic depth bins.

Logic depth significantly impacts criticality during static timing
analysis (STA), while the number of wires affects routing congestion.
In this context, MMM demonstrates superior results compared to
other methods.

Table 2: Resource reduction of NVDLA CMAC.

1 Mac Cell ORG16 MUX16 MMMI16
LUT 45k 728k 123k 102k
NET 62k 993k 206k 116k
FF 3,311 52,976 55,824 56,767
sum of FO 345k 5515k 1022k 787k
highest FO 14k 14k 26k 14k
logic depth 34(128) 34(2048) 37(2048)  35(128)

Simulation Speedup in MMM Simulation System. The main
purpose of our MMM method is offloading workload of compute-
intensive modules that take a lot of time to simulate to an FPGA
card so they can be run on actual hardware. In this section, we
are going to talk about how fast VCS version of simulation can
be done on CPU and how fast our CPU-FPGA hybrid system can
finish the same simulation task. For NE case, simulation took 372.8
seconds in CPU on VCS simulator and took 0.6 seconds on our
CPU-FPGA hybrid simulator, showing our proposed method has
621.3% speedup in simulation time. The workload we run in this test
is our own matrix multiplication test pattern for chip functionality
verification. For NVDLA, simulation on the CPU with the VCS
simulator took 0.88 hours, while the FPGA-only simulation system
completed in 0.867 seconds, demonstrating a 3653X speedup for
the AlexNet experiment.

Partitioning Frequency. To evaluate our partitioning strat-
egy, we applied ZeBu5’s auto partitioning and compared it to our
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method. While ZeBu log and other FPGA-accelerated simulators
report FPGA implementation frequency, the actual speed is slower
due to inter-FPGA communication. We define this reduced speed
as ‘Effective Frequency’. Additionally, MMM achieves faster com-
putation of repetitive logic pattern through MMM folding, this
clock frequency within MMM modules is marked as the ‘Fastest
Frequency’. Table 3 shows the results from various FPGA-based
simulators.

Table 3: Effective frequency of the commercial chip2 Neu-
ral Engine using different partitioning methods on various
FPGA-based devices.

System  Partition Folding Impl. Fastest  Effective =~ FPGA LUT
(MMM) Freq(Hz) Freq(Hz) Freq(Hz) (% 1FPGA)
ZEBU Auto 1:1 3M - 57.8k VU19Px5  5.5M(134%)
ZEBU Auto 1:16 3M 295k 16.4k VU19Px2  1.6M(39%)
ZEBU NO 1:16 3M 285k 11.4k VU19P 1.6M(39%)
FPGA  Tradition 1:1 60M - 318k U250x5  5.5M(318%)
FPGA Basic 1:16 60M 1.75M 97.4k U250x2 1.6M(92%)
FPGA  Advance 1:16 60M 7.14M 397k U250x2 1.6M(92%)
HAPS NO 1:16 100M 100M 5.6M VU19P 1.6M(39%)
FPGA  Advance 1:8 60M 7.2M 720k U250x3  2.1M(121%)
HAPS NO 1:8 100M 100M 9.9M VU19P  2.1M(51%)
FPGA  Advance 1:4 60M 3.6N 590k U250x5  3.1M(179%)
HAPS NO 1:4 routing fail - VU19P 3.1M(76%)

With MMM-applied cores, ZeBu achieves an effective frequency
of 11.4 kHz using a single FPGA, and runs even faster with autopar-
titioning, reaching 16.4 kHz on two FPGAs. With MMM and its
partitioning strategy, the effective frequency reaches 397 kHz using
only two FPGAs, surpassing the 318 kHz performance of traditional
partitioning with fewer FPGAs. For MMM’s single FPGA perfor-
mance (without partitioning), ZeBu and HAPS achieved fastest
frequencies of 285 kHz and 100 MHz, and effective frequencies of
11.4 kHz and 5.6 MHz, respectively. ZeBu’s design focuses on multi-
FPGA simulation with additional software and hardware logic for
debugging, leading to lower speeds compared to HAPS. However,
MMM on ZeBu can reduce FPGA usage by 2/5 or even 1/5, freeing
resources for other users.

Comparison with Other FPGA-accelerated Simulators. We
have compared our work with other FPGA-accelerated simulators
in the literature that can either perform software-hardware co-
simulation or automatic resource reduction with compiler sup-
port, with respect to supported source design format, deployable
hardware, simulation features, resource utilization reduction, and
routing congestion ease effect. FireSim [9] is an FPGA-accelerated
simulation platform offers scalable, cycle-exact microarchitectural
simulation for chip-scale (or already silicon-proven) hardware de-
sign and supports automatic design partitioning [18] and resource
optimization [10] for FPGAs. However, its current resource op-
timization is limited to multi-ported memories, with additional
resource-reducing optimizations still under development.

Twinstar [3] is a ASIC design simulator for IBM’s Bluegene/Q
computing node and it supports auto partitioning of the target
design. However, it can only work on the dedicated FPGA cluster
server they created which can be configured to have 28 to 60 FPGAs.
Also, to minimize latency of simulation system with inter-FPGA

connection, they utilized TDM strategy with LVDS-based commu-
nication, but they did not implemented any routing optimization
technique or resource reduction strategy as we do. Plus, their op-
erating frequency is limited by inter-FPGA communication delay.
RAMP Gold [17] is an architecture simulator which aimed to reduce
the resource utilization of the soft-core processors deployed on FP-
GAs by removing forwarding-path multiplexers in the processors.
By using this method, they could reduce 26-32% of combined area
for both LUTs and FFs in their design and frequency is also in-
creased by 18-58%. Also, they utilized the TDM method to virtually
increase the bandwidth of the BRAM resources. To address high
routing delays in FPGA primitives like DSPs and BRAMs, which
run at hundreds of MHz but suffer from fixed on-die locations,
they implemented a location-aware routing strategy that prioritizes
resources to these components. However, their performance and
resource reduction ratio is lower than ours.

DEEP [14] is a FPGA-based many-core emulation system for
chip verification. By using iterative emulation technique, they tried
resource-sharing technique on FPGA by running sub-modules of
chip design iteratively module by module on one or few FPGA
boards. This is similar to our approach since we also run multiple
data flow path iteratively on the module level for FPGA resource uti-
lization reduction. Unfortunately, they did not report the resource
utilization reduction they could achieve through this method. Like
our compiler design, their simulation system also requires separate
synthesis procedure for FPGA deployment and thus adding extra
processing time in compiler.

In summary, none of the previous works feature a module-level
resource utilization technique with up to 96.88% of LUT saving like
ours, with full compiler support for applying resource-sharing to
large ASIC designs. Additionally, our novel latency-hiding and inter-
FPGA communication optimization techniques, combined with
routing congestion reduction, demonstrate strong performance
compared to prior works. With these features and compiler support,
our proposed simulation system can be deployed on any FPGA-
based device available on the market. Table 4 shows the comparison
of our proposed FPGA-accelerated simulator with aforementioned
SoTA simulators in the literature.

7 Conclusion

In this work, we developed a resource-optimized FPGA simulation
system with an automatic compiler. Using the MMM, designs with
resource-intensive implementations can reduce resource utilization
on FPGA-accelerated system by up to 93.75%, depending on the
size of the time-multiplexed target module. To further enhance sys-
tem performance, we implemented a latency-hiding technique for
inter-FPGA communication, optimizing interface communication
to reduce latency overhead. However, CPU-FPGA communication
remains as a bottleneck, even though it provides faster overall sim-
ulation speed compared to CPU-only simulations. Additionally,
inserting MMM-related logic into the target module adds extra
computation time during synthesis, leaving room for optimization
in our compiler design. In future work, we plan to optimize CPU-
FPGA communication to improve system performance and develop
a Vivado-independent MMM compiler, as the current bottleneck
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Table 4: SoTA comparison with other FPGA-accelerated simulator in literature.

Source Resource Routing Implementation Deployable Auto- Automatic  Abstraction
support reduction (LUT) optimization frequency hardware partitioning  compiler level
. Verilog, VHDL, Any FPGAs .
This Work HLS, Chisel upto 93.75% (MMM16) Yes 100 MHz Zebu, Palladium No Yes Hybrid
L Chisel, Any FPGAs .
Firesim [9] RTL as blackbox upto 26% No 3.42 - 6.6 MHz AWS F1 instance Yes Yes Hybrid
. . . Dedicated
Twinstar [3] Verilog, VHDL Not available No 1-4MHz FPGA cluster Yes Yes No
RAMP Gold [17]  Verilog, HLS upto 32% Yes 90 MHz i(;t?;‘SFPGA No Yes Hybrid
Any FPGAs
. iterative run of 100 MHz (emulation) Instruction
DEEP [14] Verilog, VHDL sub modules No 80k cycle/s Any workstation No Yes level
(simulation)

largely stems from Vivado-related commands executed by our com-
piler.
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